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FOREWORD

This report describes the method and computer program for calculat-
ing laminar boundary-layer properties over bodies of revolution at
large incidence in subsonic flow, With minor changes, it was also
Mr. Lee A. Kania's thesis for the Master of Science Degree in Mechanical
Engineering at North Carolina State University in 1983,
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Procurement Instrument Identification Number (Contract Number) F33615-81-
K-3625 with the Air Force Wright Aeronautical Laboratories, Wright-
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SECTION 1
INTRODUCTION

There are at present numerous methods available for calculating
boundary layers over two-dimensional and axisymmetric bodies at zero
angle of attack (Refs. 1 and 2). Methods for calculating three-
dimensional boundary layers (Refs. 3, 4 and 5) are not as numerous due
to the fact that they have only recently come under investigation.
These techniques are, at present, limited in application. Generally,
fully three-dimensional methods require considerable storage and com-
putational time on existing digital computers. To compound the problem,
the potential solution in most cases cannot be described through a
simple analytical expression.

A relatively simple, approximate method for calculating three-
dimensional boundary layer pronerties is the axisymmetric analog. In
this method the boundary-layer equations are written in a streamline
coordinate system and the cross flow velocity is assumed to be zero.
This reduces the three-dimensional boundary layer equations to a form
that is identical to those for axisymmetric flow, provided that (1) the
distance along an inviscid surface streamline is interpreted as dis-
tance along an "equivalent axisymmetric body," and (2) the metric co-
efficient that describes the spreading of the streamlines is interoreted
as the radius of the equivalent body. This allows any existing axisym-
metric boundary-layer program to be used to compute the approximate
three-dimensional boundary-layer properties. By considering multiple

streamline paths, an entire surface can be covered.




The major difficulties in applying the axisymmetric analogue are
the calculation of the inviscid surface streamlines and the corresnonding
scale factor. References (7) and (8) provide two methods with which to
trace inviscid surface streamlines from surface pressures. These two
approaches are basically identical in that each requires the integra-
tion of a first-order differential equation to yield the streamline angle
(the angle between a streamline and body meridian).

In Reference (7) Vollmers proposes that a shooting technique be
employed to determine an initial value for the streamline angle. He
contends that a valid initial value may be obtained near the stagnation
point if the streamline angie approaches the correct 1imit durina the
upstream integration from a given point on the body. For a nonspherical
nose, the streamline geometry is such that the streamline angle is either
0 or 180 degrees in the Timit at the stagnation point (Ref. 9). Vollmers,
however, fails to account for the behavior of the scale factor during
the upstream integration. There is a possibility that the scale factor
may tend to zero during the integration despite the fact that the stream-
line angle may approach the proper limiting value. A scale factor of
zero implies that the streamlines cross at a particular point and this
is a physical impossibility. This condition can occur when approximate
surface pressures are used. If the inviscid surface velocity components
were known, the streamlines could be calculated more easily and there
would be no possibility of streamline crossing.

In Reference (8), Dedarnette attacks this problem by describing the
streamline geometry analytically in the stagnation region. Outside this

region, the inviscid surface streamlines are calculated from the surface




pressure distribution. This is the approach employed in the present
method for instances in which an analytical potential solution is not
available.

The method used to calculate the "equivalent radius" along a stream-
line follows from a method developed by DeJarnette in Reference (9) and
is included in this study. Dedarnette has previously used a two stream-
line approach to determine the scale factor, but this necessitates the
calculation of a second or auxiliary streamline. In the present method,
the scale factor is calculated along a single streamline from the solu-
tion of two first-order, auxiliary differential equations which are
functions of the surface pressure distribution and body geometry.

The present method employs Hall's (Ref. 4) and Blottner's
(Ref. 2) methods to obtain a solution to the axisymmetric boundary-layer
equations. Hall applies a Crank-Nicholson differencing technique to the
nondimensionalized equations. The body radius, which appears only in
the continuity equation, is replaced by the scale factor in accordance
with the axisymmetric analogue. Blottner employs the same differencing
technique to the axisymmetric boundary-layer equations written in
transformed variables. In this case the body radius appears only in
the definition of the transformed variables and is likewise renlaced
with the scale factor. The body radius does not appear explicitly in
the transformed boundary-layer equations. The development of each of
these methods is included in this study. In the development of the
boundary-layer code, various velocity profiie convergence tests and

boundary-layer edge tests are investigated also.




Any axisymmetric configuration may be input to the program as long
as an analytical expression for the pressure distribution is provided.
In the event that only experimental pressure data are available, the input
geometry is restricted to spherically capped bodies due to the limita-
tions of the techniques used to represent the surface pressure distribu-
tion. On the spherical cap the pressure distribution is represented by
a Fourier cosine series while on the remainder of the body, a doubly
quadratic spline is used to model the experimental pressure data. The
body geometry may be expressed in either English or SI units, or in non-
dimensional form.

Results from the computer program are presented for a sphere,
ellipsoid of revolution with thickness ratio 1/4 and a sphere-ogive-
cylinder configuration as example applications of the computational

method.




SECTION 2
INVISCID SURFACE STREAMLINES

The axisymmetric analogue concept employed in the computer orogram
effectively reduces the three-dimensional nature of the boundary layer
to that of an axisymmetric one along an inviscid surface streamline.
This necessitates the calculation of the equivalent radius of the newly
defined axisymmetric body. The equivalent radius or scale factor is the
metric for the coordinate 8 normal to the streamline on the body surface
and is calculated along inviscid surface streamlines. The scale factor
is an indicator of the physical spacing between streamlines. A scale
factor that is increasing indicates that the streamlines are diverging
and thus the equivalent radius is increasing.

The method of DeJarnette (Ref. 8) is used to trace the inviscid
surface streamlines. In this method, the body geometry is exoressed

in terms of the unit vectors, éx. ér and &, which form an orthogonal

¢
cylindrical coordinate system. Unit vector éx is parallel to the body
axis, unit vector ér is in the radial direction and normal to the body
axis. The third unit vector in this system, é¢, is in the circumferential
direction (see Figure 2.1).
A second coordinate system which is oriented to the body surface
is used to describe the surface streamlines. This system consists of

the unit vectors, ell, en. and 8 Unit vector én is normal to the body

o
surface and is given by

én = -sinT éx + cos T ér . (2.1)




ﬁr,éf

K]W
M x. éx*

LT

Figure 2.1. Body Geometry Coordinate System




Unit vector, 611, is tangent to the body surface and lies in a meridianal

plane. This vector may be expressed as

611 =cos T éx +sin T ér . (2.2)

The angle T is the body angle and is a function of x only for an axisym-
metric body (see Figure 2.2).

The streamline geometry is expressed in terms of unit vectors, és.
éB and én which also form an orthogonal coordinate system. Unit vector
és is along a streamiine and tangent to the body surface. Unit vector
éB is normal to the streamline and also tangent to the body surface.
Unit vector én is used in common with the previous coordinate system.
Since the streamline is projected on the body surface, the component
along én is zero and a streamline will thus lie in the tangent plane

generated by unit vectors és and & This is the identical plane gener-

8
ated by éll and é¢. The streamline angle 6 is defined to be the angle
between unit vectors és and éll (see Figure 2.3). This angle is the
inclination of the streamline relative to a body meridian. /The stream-
line unit vectors may then be written in terms of the body geometry unit

vectors as

8 = (cos 8 cos D& + (cos 6 sin ) &_ +(sin ) é¢ (2.3)

and

éB = -(sin 6 cos TI) éx - (sin 8 sin T) ér + (cos 6) é¢ . (2.4)




Figure 2.2. Surface Coordinate System




stagnation point

Figure 2.3. Streamline Coordinate System




Dedarnette (Ref. 9) then constructs the transformation operators
which relate the streamiine partial derivatives to the cylindrical co-

ordinate derivatives. The operators may be written as

(6, - €,)
hag™ (& &) 5t — 35 (2.5)
and
€ -6)
D _ . 9 S_JL___é_.ii
DS ~ (éx és) T r 39 (2.6)
where D/DS is a derivative along a streamline and %—g% is a derivative

normal to a streamline and on the body surface. Substituting the

expressions for the unit vectors yields

13 . D, 088 3
h 38 sin 6 cos T X = 3 (2.7)
and
D _ 9 ,sin6 3
DS = CoOs @ cos T X = 3% (2.8)
Application of Equation (2.8) yields
Dx .
DS = Cos B cos T (2.9)
and
Dp _ sin @
0S . (2.10)

10




These differential equations may be numerically integrated to give the
axial and circumferential position along a streamline when 6 is known
(the initial values for all differential equations will be discussed
later in this section). If the potential solution were known in analytic
form, the angle 6 could be determined from it. When only pressure data
are available, 6 must be calculated from a differential equation.
DeJarnette derives the differential equation for the streamline
angle 6 from the application of Euler's equation on the surface of the

body. In vector form Euler's equation is

2,

=- ¥
it (2.11)

The convective term may be recast in streamline coordinates as

De

ug-g-es+uzb—ss . (2.12)

The pressure gradient in streamline coordinates may also be written

as

= Dp 13p 3p
vp s és * 38 68 + n én . (2.13)

Euler's equation may then be written as

D
oy 2_s._1]/0p 13p 3p
Ups & * U 53 p{DSes+h38eB+anén ' (2.14)

The scalar product of éB with this equation gives

bé 1

P
hae - (2.15)

o
w
™
he)




T~ scalar product of EB with the derivative of the expression for és

yields (Ref. 9)

dés +8,=4d6 +sinT d¢ . (2.16)

B

Substitution of this equation into (2.15) yields

D6, ;o pDBO_ __1 13p
DS +sinT DS SU¢ b . (2.17)

Application of the previously defined transformation operators can be

used to write this equation as

2 aC 3C . .
Do _ 1 Yoo p,cos 6 " p sin T sin®
] [—ue] {- sin 6 cos T 3% + = 84;} - = .{2.18)

Equations (2.9), (2.10) and (2.18) can be numerically integrated to fully
describe the geometry of the streamlines resulting from a given pressure
distribution. If the potential solution is expressed analytically, 6

may also be expressed analytically and only Equations (2.9) and (2.10)
need be integrated.

The scale factor must be evaluated simultaneously during the stream-
line integration for use in the boundary-layer calculations. The tech-
nique employed here has not previously been used elsewhere but follows
from a technique developed by Dedarnette (Ref. 9). If the streamline
coordinate 8 is substituted into the transformation operators (2.7) and

(2.8), the result is easily shown to be

1_ . 98 cos 6 98
h sin 6 cos T == ) T % ) (2.19)

and

12




_ 3B sin 6 3B
0=cos 6cos T ™ A + r— oY) . s

(2.20)

respectively. Note that gg = 0 since the coordinate B8 is constant along

a streamline. Equation (2.20) may be solved for 28| and then substituted

ax|¢
into Equation (2.19) to yield
) -sin 6 9B cos 6 98
h sin 6 cos T [r cos 6 cos T 9¢ x] * r 9 (2.21)
which reduces to
1. 1 28
h ™ Trcos 6 3 < (2.22)
or
h=rcos 8 ] . (2.23)
98 X
Note that since B = 8(x,4),
8 . _1
30, 2
38|,

This expression necessitates the additional calculation of %% along
X
a streamline in order to calculate the scale factor h.
The differential equation for %%1 may be obtained as follows,
X

Equations (2.9) and (2.10) may be combined to give

Dp _ _tan B
Dx rcos'n ° (2.24)

13
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Taking 3—1' of both sides of this equation yields
X

3 D¢) _sect 8 30

Dx/] rcos T 3¢

3 |Dx (2.25)

since both r and T are functions of x only for an axisymmetric body.

With B = B(x,q))s

2| .28 2
a¢|x a¢|x as’x (2.26)
and
Do . 3¢
Dx ~ %], (2.27)

the derivative of Equation (2.24) with respect to ¢ may be written as

2 |De| . 28 _Q_l _@il-_-S_eii_a_e (2.28)
3 {Dxj ~ 3| 3B|, (&jl; rcosT 3|, )

This in turn may be rewritten as

2 |De} . 1 D J3¢
3 [Dx] 99| Dx [BB” (2.29)
38 X
or
D L] - 1 38
Dx [L" 98 x] r cos® 6 cos T 3¢ X ) (2.30)

By application of the chain rule and Equation (2.9), this differential

equation may be recast as

14




D (p38])._1_ 20
55 [z" as'x] rcos 6 5|, - (2.31)

The integration of this differential equation along a streamline requires

38

T x

The differential equation for g—gl may be derived as follows: sub-
X

that also be known.

stitution of the transformation operator in Equation (2.8) into the

streamline Equation (2.18) yields

2 C
38 , sin 6 36 _ sinesinr_l_u_og lag
cos B cos T g+ ST = - - 5 ["e] [h 58] (2.32)

. 36
Solving for ™ gives

2
8 _ 1 sineﬁ_,,sinrsine,,lfg] _l_a_cp_ (2.33)
oX cos 8 cos T r 93¢ r 2 ueJ h 38 ’ ’

Taking the partial derivative with respect to ¢ of Equation (2.32)

yields
3%¢ sin 6 23%p 36 36 , cos 6 (36?2
e — —— - — i, —re | e =
cos 6 cos T 303 - %7 sin 6 cosT 3% 30 Al a¢]

sin I cos 6 30 lum2 ﬂae sine_a_cgae
-———;————%*fa‘; COSSCOSI‘axa—¢+—F—a¢3$
3

2%C 2c u_)? du aC
P _cos 8 = 1 e _p
+ sin 8 cos T 309X - #] [UJ Uy 30 [sin 6 cos T P
aC
cos 6
- 22 7)?] . (2.34)
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Bernoulli's equation enables the circumferential velocity derivative in

this expression to be written as

L_e___la_ca[ﬁ-;]z
u T T2 9 ”eJ

(2.35)

Substituticn of this equation and the two transformation operators into

Equation (2.34) gives

_— —— e gy sttt | ot

2 :
D [ae] - <in 6 cos T 2030 _cos 8 [ae] _sin T cos 6 38

DS (3¢ X 9% r (3¢ r 3
(u )2 |DC 3%C 32C
1= |Tpas, . p _ cos 6 p
*3 e) |75 % *sin 8 cos T 5o3y v 5%
( 4
1 [t [1 3“]
2 Ve 3 (h 9B

Substitution of Equation (2.33). into this equation yields

D (e8] ) _ _sino (38 sin 6 (86| ) , sin I sin 6
DS 3], cos 6 [as|, r 3|, r

u,|* EEE cos 6 (38| |* _ sin T cos & (38
Yol Zhnee | T T el r 7'
Ye X) X
(u ]2 DC 3%C 32C
1=l |—p (28 —p.cos6__p
*3 ug) | [a¢|x] tsinbcos T o - = %
( 4
I [13_‘52
2 |ug| 3o (3B
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Note that
DC . aC oC . oC . 5 aC
“p_sin 6 (1 ""p| . p . sin 8 p ., sin® 6 cosT “p
DS cos © [h 9B cos 8 cos T ax * r T ¥ cos 6 X
) aC
- P
r o

This may be simplified and written as

Egg_sine lacp ___cosr‘acp
DS cos 8 (h 98 cos 6 ox

Substitution of this expression into Equation (2.37) leaves

D {QQJ . _sin’® {gg]z _sin?psinT {gg] _cos B (ae]z

DS {3¢]  ~ r cos 6 |90 r cos 6 Y r (3¢

2
_sin T cos 6 [36] o1 [fgﬂ [ae] cos T EEE %

1)’
)

r 20 “eJ 3, CoS 6 ox
32¢C 2C u ]“ aC
I p _cos 8 1l | = P _1_
sin 6 cos Tz - 3¢ 5 [ﬁ;] % (h —7§J . (2.38)

With the substitution of the transformation operator in (2.7), Equation

) (2.38) may be rewritten as
sin T
) BB e
DS |39 r cos 0 2 eJ sin 6 cos 39X
2 Y4
el 1oy )
r 3¢ ueJ cos 6 9x 2 |u 3
e
aC oC
. __Jg cos 6 °p
sin 8 cos T % T 8| (2.39)
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This differential equation involves first and second derivatives of the
pressure coefficient which are supplied by either the analytical solu-
tion or the spline fggcif only experimental pressures are supplied.

Note, however, that 7;:? does not appear and thus the spline fit in the
x-direction is simplified, Equations (2.31) and (2.39) may be integrated
to give the scale factor (Equation (2.23)) along an inviscid surface
streamline., The diffarential equations are singular at the stagnation
point; therefore, the geometric position where the integration of the

streamline equations begins must be some distance away from the stag-

nation point (Ref. 9). The technique used here denends on whether the

inviscid properties are obtained from experimental pressure data or
an analytical potential solution.

When experimental pressure data are used, there are generally
insufficient data near the stagnation point to adequately determine
the pressure distribution needed for the inteqgration of the streamline
equations near the nose. A potential panel method, USSAERQO, was used
to obtain additional pressure data in the nose region. It was found
that this pressure data and the experimental pressure data, at the
most forward position, were reasonably close to a spherical pressure
distribution about the stagnation point. A spherical pressure distri-
bution produces streamlines along spherical meridians from the stagna-
tion point to the sphere-afterbody interface. (See Figure 4.1 on page
35.) On the spherical cap, the streamline geometry and metric are given
in Ref. 14. Integration of the streamline differential equations begins
at the sphere-afterbody interface. For a given circumferential angle ¢o’

page 31 of Ref. 9 gives the initial streamline slope as
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8, = cos=! {(cos Ggpp COS Ty = sin o cc sin I cos ¢o)/sin wo} (2.40)

where the spherical angle is determined from

- -1 . N
wo = CO0S {cos Aape SIN FI + sin Qo COS PI cos ¢o} . o (2.41)

The initial value of (ae/a¢)o for Equation (2.39) is obtained by

differentiating Equation (2.40). The result is

ng . sin Coff sin FI sin ¢o - CO0S 60 cos wo [a¢ o (2.42)
0

o¢ sin wo sin eo

From Ref. 14, the streamline metric on the spherical cap is given by

- h = Rper sin ¢; and since r = Rper cos T, Equation (2.23) gives

sin ¢
1) . 0 (2.43)
o8 X cos 0 cos Bo
(o]

as the initial value for Equation (2.31) at the sphere-afterbody inter-
face.

When an analytical potential solution is known, the inviscid ve-
Tocity components can be used to obtain an analytical expression for
the streamline angle, 6, and its circumferential derivative, 36/3x.
Then Equation (2.39) is not needed and Equations (2.9), (2.10), and
(2.31) can be integrated numerically to determine the streamline loca-

tion and metric., Initial conditions for the streamline location are
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determined from an axial position and circumferential angle near the
stagnation point. As discussed in Ref. 9, the initial value of
(a¢/88)°, and hence h , for Equation (2.31) is arbitrary. Since Equa-
tion (2.31) is used to integrate &n(d¢/3B) will have no effect on the
numerical integration of this differential equation. The actual

value calculated for 3¢/3B, however, will be relative to the initial

value (8¢/BB)0.
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SECTION 3
BOUNDARY LAYER METHODS

The present computer program has the option of employing either
Blottner's (Ref. 2) or Hall's (Ref. 4) boundary layer method. For each
method a solution is obtained through the use of a finite-difference
technique. After application of the respective transformation, the
governing equations are then cast in second-order accurate finite-
difference form. Since the governing equations are parabolic, the
boundary layer may be calculated by "marching" downstream in a step-
by-step fashion along an inviscid surface streamline.

Blottner's method involves solving the governing equations written
in F-V similarity form. These equations are obtained by the application

of the Levy-Lees' transformation defined for incompressible flow as

S u
£(s) = Kou qu -£ 2 gs (3.1)
0 %
and
ue ron
n(S,n) = (3-2)
V2

In the axisymmetric analogue, the body radius r is replaced by the scale
factor h and s is distance along the inviscid surface streamline. This
transformation creates a (&,n) computational grid from the (s,n) physi-
cal grid. The computational grid has been effectively stretched in

both the normal and tangential directions. The resulting equations are
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oF . 9V

26 Gt F=0 (3.3)

and
zgr-gg sV g% + B(F2-1) = %%; (3.4)

where

V = 2¢ [F %% + pVh/vr727K7Kpuueh2 (3.5)
F= ufug (3.6)

and
8- 5—‘;%% (3.7)

(see Appendix A.1) . These equations are then cast in finite difference
form using the Crank-Nicholson scheme to yield a system which is second-
order accurate in both spatial directions. The resulting system can

be conveniently written as

A B C E, V =D (3.8)

2 Find,3-1 Y B Fins Y G2 Ving g1 P Ba Vi 57 02

where

Ay = nl% + £, /AE)
By = Mn(% + £, /88)
c, = -1
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]
—

and

[
f

g = A% + B /Be)(Fy 5+ Fy )

for the continuity equation and

A P Y B Fieng Y8 Frengn T E Va5 7 D (3.9)
where
Al = - ;5 (1 + liAn vi'”i,j)
- 27 o
By = 1+ 80" Fipp g (Bpasg * 260/00)
o 1
SRS AURS EURIFW)
1 _F
E1 = z-An (Fi,j+1 - Fi'j_] + r}+],j+] F1+1,j-1)
and

- ' ' 2 7 T2
Dy =% (Fy gap = 2y 5+ Fy gup) + 000" By, [“ t i,y

+

A -— - -
(1 - F;,j):] * i]. V'H';E’J E:'H'loj"'l ) Fi"'loj']]

+

an® £qp (Flap g+ Py, 50706

for the momentum equation (see Appendix A.2). To provide that only
a linear system of equatfons needs be solved to obtain F, the nonlinear
terms in the finite di fference expressions have been linearized using

the Newton-Raphson technique. This will necessitate repeated iteration
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P_*

in order to achieve a converged solution to the actual nonlinear equa-
tions. The bar indicates quantities from a previous iteration.

By virtue of the transformafion in Equations (3.1) and (3.2),
Blottner's method may be applied at the stagnation point to yield a

limiting velocity profile. In addition, a similarity solution is nos-

sible since £ = 0 at that point (see Appendix A.3). The boundary
conditions consist of the edge and wall conditions. At the boundary-

layer edge the condition

F(n = ne) =1

is applied at each step of the integration. The value of the normal co-
ordinate at the boundary layer edge, Ngs must be provided initially and
must be large enough to account for the entire boundary layer thickness.

The no-slip condition demands that
Fin=0) =0

at each step. The pressure gradient parameter, B, is related to the
velocity gradient and for spherical flow, B, becomes 1/2.

The system of equations may then be solved to yield the limit of
F at the stagnation point through use of the modified Davis algorithm
(Ref. 2). This algorithm solves a coupled system of equations. The
profile slope at the wall may be expressed by a second-order accurate
expression which in turn is used to evaluate (Cf.fﬁgi)w

At points away from the stagnatfon region it is necessary to solve
the complete, nonsimilar system of equations (Equations (3.8) and

(3.9)) which involve the transformed step size, Af, along a streamline,
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With a prescribed step size along a streamline, the expression for £ may
be numerically integrated for subsequent use in the boundary layer equa-
tions. The calculation of the pressure gradient parameter, B, which is

defined as

du
_e

dg ’

w}
n
o= [

is evaluated at the midpoint of the computational interval along the
body surface. On the nose region of a spherically capped body, this

term reduces to

2
_ 2 (Yol Ey4 due
B, = n o] s e
itk Rper [ue] h® dy i+
and on the afterbody it becomes
2
itk h Ug ox DS ¢ DS §43
aue aue u
The derivative —= and both —= and —< are supplied by subroutines
oy 9x ot
SPHCAP and INVISD, respectively. The two total derivatives along a

streamline, %é and %% » are used in conjunction with the streamline

integration (see INVISCID SURFACE STREAMLINES). The nonsimilar equa-
tions may then be solved for F using the same computational technique
as was used at the stagnation point.

Hall's method involves solving the governing equations written in
terms of dimensionless primitive variables. Hall employs the customary

transformation
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s* = /L

n nm—
"L Ry
r* o= /L
u* = u/uw
v¥ = v/u

where

which yields

*pk *
Arrt) 4 e A2 g (3.10)

for the continuity equation and

*)2
u* M— + * au* = d(ue )

1 32u*
3s* TV anF T2 Tds* T on#? (3.11)

for the s-momentum equation (see Appendix A.4). The desired unknown
is u* which is the dimensional velocity normalized by the freestream
velocity. These equations are then cast in second-order accurate finite-
difference form (see Appendix A.5). The resulting system may be ex-

pressed as

A + B, u +E D (3.12)

2 Yi+1,5 T B2 Yi41,51 v

+ C2 v,

it § T t2 Vieg,i-1 T 2

where
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A s Anhi+1
2 2Ash,+l§

5 - Anhi+1
2 2Ashi+%

CZ"].

E2 = -]

and
Anhi

=2 (U, .t u, .
%2 * Zshy,, (Ui 5 * Yy,5-2)

for the continuity equation and

A1 ui+1,j-1+ B1 ui+1,j + C1 u1+l,j+1 + E1 Vi+g,j = D1 (3.13)
where
PR %
1 4An " 7Bn?
B = u}+1,j L
1~ As AnZ
V.. .
= Jd¥sj 1
1 &0 " Zan?
Ey = ‘“1+1,j+1 T Uie1,3-1 T Y4561 7 Yy, 54007900
and
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o+ Sitlg M, g Ll Ve ger)
1 2hs i+, 4An
u? - y2
TS T L B L i N R Y
24s 2An*

for the momentum equation (note that the stars have been omitted for
clarity). These equations have also been linearized using the Newton-
Raphson method. The system of equations which results at each station
along the body is block tridiagonal in form and may be easily and ef-
ficiently solved in the same manner as was used for Blottner's method.
The boundary conditions required for a solution to Hall's equa-

tions are that

n
(=

u(s,ne) e

and

n
o

u(s,o0)

for the no-slip condition.

To begin the integration of the bourdary laver, an initial profile
must be known. The stagnation point is an ideal place to start the
integration. Hall (Ref. 4) and Geissler (Ref. 10) both utilize the
well-known three-dimensional stagnation point boundary-layer solution
of Howarth (Ref. 11). This is an unwarranted complication since at

the stagnation point

u(o,n) = 0
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at all points across the boundary layer. This may be used as the initial
velocity profile in Hall's method, and then the first station away from
the stagnation point, along an inviscid surface streamline, may be cal-

culated by the method given above.

3.1. Convergence Criteria

Since the finite-difference equations have been linearized, repeated
iteration is necessary in order to obtain a solution to the nonlinear
equations. The iterative process could be made to continue until the
solution becomes exact (within the accuracy of the computer) but this is
no doubt unwarranted. In practical applications, the iterative process
is usually allowed to continue until the solution is changing by less
than a prescribed amount between successive iterations. This is one
definition of a converged solution.

Because the skin friction is the one of the more important parameters
of interest, it appears logical that convergence should be based on it.

In practical applications, the iterative process should stop when the

skin friction changes by less than a prescribed amount between successive
iterations. This is the definition most commonly applied in two-dimensional
boundary layer cases,

The computational method developed has the option of employing
either of these definitions. The input parameter, NC, corresponds to
the method which is used to define a converged solution. The option
corresponding to NC = 0 specifies that convergence is based on [cf ReL)e
changing by less than 0.5 percent between successive fterations.

Covergence is based on the velocity at each grid point changing by
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less than 0.1 percent'between iterations when NC = 1. Table 3.1
illustrates the effect of this option on the separation point for
a sphere in incompressible flow.

Table 3.1. Effect of Convergence Criteria on Boundary-Layer Separation
for Hall's and Blottner's Methods on Sphere in Incompres-

sible Flow
Separation Steps to
Method NC Angle (Deg.) Separation
Hall 107.43 184
As = 0.01
Ae = 0 0471 1 104.83 184
Blottner 0 105.75 278
AE = 0.005
An = 0.11539 1 104.94 276

e ——

—— ———

40 Points Across Boundary Layer Initially

3.2. Boundary Layer Edge Criteria

Since the velocity in the boundary layer only approaches the value
of the inviscid stream asymptotically, an effective edge must be imposed.
The velocity at the grid point which is arbitrarily said to lie at the
edge is assigned the velocity of the inviscid stream. The relationship
of the velocities at the grid points in the region near the imposed
edge may then be used to assess whether the actual boundary-layer thick-
ness has been adequately accounted for. According to the classical
definition, the boundary layer thickness is adequately reoresented if
the velocity at the point adjacent to the imposed edge is a certain

nercentage of the velocity at the imposed edge. This percentage is
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usually in the range of 99.5 to 99.995 percent. Wang (Ref. 5) emoloys
this definition in his fully three-dimensional technique. A second test
for the boundary-layer edge could be constructed which utilizes the fric-
tion parameter, [Cf JE;L}e’ at the edge of the boundary layer as the
governing criterion. If this parameter is below a prescribed limit, the
imposed edge may be considered to adequately account for the boundary-
layer thickness.

Both of the tests described above are included as options in the
present computational method. The parameter NT specifies an option to
be used for the edge test. The option NT = 0 specifies that the edge
test be based on the classical definit{on in which the tolerance is
99.95 percent. The second test, which corresponds to NT = 1, requires
that [Cf‘JE;L]e be less than 0.005 for the boundary-layer thickness to
be adequate. Table 3.2 illustrates the effect of both the edge test
and convergence test options on the separation point for a sphere in
incompressible flow. Note that the more stringent option, NT = 1, re-
sults in the addition of points at the boundary-layer edge and a more
accurate separation point. The results generated in conjunction with
the option corresponding to NT = 0 could most 1ikely be improved if the
respective tolerance were to be decreased. It is evident from the re-
sults obtained with Hall's method that the boundary layer is undoubtedly
thickening. Since Hall makes use of primitive variables, a growing
boundary layer will require that the outer edge be adjusted occasionally.
The transformed normal coordinate used in Blottner's method has pro-
visions to account for the growth of the boundary layer. Because of

this, it is seldom necessary to manually shift the outer edge.
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Table 3.2. Effect of Edge Test and Convergence Test on Separation
for Halls and Blottner's Methods on Sphere in Incom-

pressible Flow

Separation Steps to Points
Method NC NT Angle (Deg.) Separation Added
Hall 0 0 108.59 194 23
As = 0.01
An = 0.471055 0 1 107.43 184 31
1 0 104.89 184 18
1 1 104.83 184 30
Blottner 0 0 105.02 278 0
AE = 0.005
An = 0.11539 0 1 105.75 278 5
1 0 104.94 276 0
1 1 104.94 276 4

Initially 40 Points Across Boundary Layer
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SECTION 4
SURFACE PRESSURE DISTRIBUTION

If an analytical potential solution is not available for a particular
configuration, experimental pressure data must be applied. The accurate
surface fitting of the pressure data is critical not only to the calculation
of the boundary-layer properties but also to the calculation of the inviscid
surface streamlines. Near the nose region of a body where pressure gradients
are relatively large, experimental pressure data are generally not
available. The region of the body downstream of the nose generally
experiences more moderate pressure gradients and sufficient experimental data
are provided to model a surface pressure distribution. After investigating
several methods for surface fitting experimental pressure data, it was found
that a doubly quadratic spline would adequately model the pressure
distribution downstream of the nose.

As mentioned earlier, a potential panel method, USSAERO, was used to
calculate additionai pressure data in the nose region. Attempts to use a
doubly quadratic spline to blend the pressures calculated by the USSAERO code
in the nose region with the experimental data downstream were unsucessful.

To model the pressure distribution in the nose region, an alternate approach
was employed. This method has been tested for a sphere-ogive-cylinder only.
First, the pressure data calculated by the USSAERO code were blended with the
experimental data at the most forward station and then they are plotted as a
function of the spherical angle y about the stagnation point (see Figure 5.2

on page 42). It was found that the Fourier cosine series
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9
= +
Cp (v) A nzl A, cos (ny) (4.1)
represented the pressure distribution in the nose region quite satis-

factorily. In this series, the spherical angle ¢ is given by
P = cos™? {cos Oaff sin T + sin Aaff COS I' cos ¢} (4.2)

where deff is the angle between the body axis of symmetry and the line
which passes through the stagnation point (see Figure 4.1). Note that
¥ = 0 corresponds to the stagnation point.

The coefficients in the Fourier series, An (n = 0,9), are obtained
from the solution of ten simultaneous equations generated from the
application of Equation (4.1) to ten distinct points on a curve faired
through the pressure data calculated from USSAERO. One point must
be the stagnation point itself which is determined by interpolating
data from USSAERO.

Away from the nose region, pressure gradients usually become smaller
and a doubly quadratic spline may be used to fit the experimental pres-
sure data downstream of the interface. In order to describe the doubly
quadratic spline, consider the singly quadratic spline first. An

interval

is divided into N subintervals. Each interior subinterval rage is
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+ X X + X

_r_':.l___ﬂi,(i_n__.é_n_ﬂ (n=2,N-1)

and the subintervals on the left and right boundaries range from

and

T SXEXy

respectively. The dependent variable at each of the points X is de-
signated by y, (see Figure 4.2).

There exist N-1 midpoints in the total interval. The midpoints,
denoted by xn, may be computed by the above relations. Corresponding
to each of the midpoints Xn there is a yet undetermined dependent
variable Yn' Each of the Yn's is determined such that there is con-
tinuity of the function and its first derivative between adjacent sub-
intervals. The first derivative must be specified on the left and
right boundaries of the interval. This will yield a system of N-1

linear equations for Yn (n=1,N-1). This system may be expressed as
1
X
X1
(by +¢)) Y+ dj¥p = —5=+yby + ¥, ey + d))

a ¥ + (bn + cn)Yn +d¥ .- Z“ (an + bn) * Y41 (dn + ¢ )(n=2,N-2)
&
XN
CRUTTRAL IRV R i aahl R CHEIIL VRS MY

(4.3)
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where
b1 = 2/Ax2
a, = Axn+1/[xn(Axn+1 + Axn)]
bn = {2+ Axn/Axn+1]/[Axn+1 + Axn]
¢, = [2 + Axn+2/Axn+1]/[Axn+2 + Axn+1]
dn = xn+1/[Axn+2(Axn+2 * Axn+1)]
N-1° Z/Axn
and

Axn = xn - xn__1

This system forms a tridiagonal matrix and the unknowns may be obtained
through use of the Davis algorithm (Ref. 2).

A second-order polynomial about the point X which may be written
as

(x - x)?
y(x) =y, +yplx - x ) +y ——T— (4.4)
Y

is applied at the single data point which lies within each subinterval.
This equation contains only two unknowns since Yn is known at the data
point Xn* On a given interior subinterval, y; and y; are related to
the dependent variables Y, , and Y (which have already been determined)

and can be expressed as
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' 2 n n n-1 n
y D et ————— Ax -Ax e (4.5)

n - Bx ¥ X n [ BX 41 J n+l | B
and
Y y Y -y
y; = Ax 8+ AX Xx T+ "'ix : (4.6)
n+l n+l n

Thus to determine the value of the dependent variable, y.and its de-
rivatives at any position on the total interval, all that need be done
is to determine in which subinterval the independent variable lies.
The corresponding coefficients in the quadratic expression (Equation
(4.4)) may be generated from Equations (4.5) and (4.6).

The extension of the one-dimensional quadratic spline to two
dimensions is a relatively simple process and is performed as follows.
One-dimensional quadratic splines y(x,¢k) are formed for specified values

of ¢,. For a given value of x, y(x,¢k) and %% (x,¢k) are calculated for

each ¢k. These values are then fitted by a quadratic spline in the ¢ direc-

tion. These splines can then be used to calculate y(x,$), %% (x,0)
and g% (x,9) for a given value ¢.

The quadratic spline yields a function which is continuous and has
a continuous first derivative. The second derivative is continuous (and
constant) over each subinterval, but is not constrained to be continuous
at the junction of the subintervals. It is possible for inflection
points to occur only at these junctions. Should an inflection point be
desired at a specific location, it may be included simply by the addi-
tion of two data points such that the midpoint of this interval becomes

an endpoint of a subinterval,
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SECTION 5
STREAMLINES ON SPHERICALLY CAPPED GEOMETRIES

Experimental pressure data were obtained on a sphere-ogive-cylinder
at a = 45° from the first row of pressure taps to the base region. No
experimental pressure data were obtained on the spherical cap. To
assist in modeling the pressure distribution on the spherical cap, the
USSAERO potential code was used to calculate pressure data and these
data were interpolated to locate the stagnation point. Due to the
large pressure variation over the nose region, the doubly quadratic
spline function used to model the pressure distribution downstream of
the sphere-ogive interface was found to be unsatisfactory for the nose
region. An alternate approach described in SECTION 4 was to graph
the calculated pressure data from USSAERO on the spherical cap as a
function of the angle y, given by Equation (4.2), which is the spherical
angle measured about an axis passing through the stagnation point and
the center of the sphere (see Figure 4.1). The results are given on
Figure 5.2 and they show that the pressure distribution is reasonably
close to a spherically symmetric one. With the assumption of a
spherically symmetric pressure distribution, the streamlines on the
spherical cap will simply follow spherical meridians about the axis
through the stagnation point and the center of the sphere. The angle
between this axis and the body axis is doff in Figure 4.1 which is
quite different from the actual angle of attack, a.

For spherical flow, the pressure distribution along one meridiam
is indistinguishable from another and the boundary layer is truly

axisymmetric. Note, however, that the magnitude of the pressure over
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Figure 5.2.
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this portion of a sphere is not the same as that over a sphere alone in
incompressible flow. The integration of the boundary layer equations
continues from the stagnation point along a meridian until the sphere-
afterbody interface has been reached. This stopping point is designated
by the angle ¢ attaining a particular maximum value. This maximum value
is a function of the circumferential position on the interface and

can be calculated from Equation (4.2). Beyond the interface, the

inviscid surface streamlines must be integrated numerically.
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SECTION 6
DESCRIPTION OF COMPUTATIONAL METHOD

The method presented traces inviscid surface streamlines while
simultaneously computing the properties of the boundary layer up to
the separation point. Tracing a streamline involves the numerical
integration in a step-by-step fashion of Equations (2.9), (2.10), and
(2.18) to determine the axial position, circumferential angle, and
the streamline angle {see INVISCID SURFACE STREAMLINES). In conjunc-
tion with the differential equations for the streamlines, Equations
(2.31) and (2.37) are also integrated to give the scale factor along
the streamlines. After each integration increment along a stream-
line, the boundary-layer equations are then integrated by either
Hall's or Blotcner's method to determine the local velocity profile
across the boundary layer (see BOUNDARY LAYER METHONS). This pro-
file is used to determine the local value of [Cf REL} . The senara-
tion point for the flow along a particular streamline ?s assumed to
occur when this parameter passes through zero. All calculations stop
at this point since both the streamline and boundary-layer equations
are invalid in the separated region. Several streamlines are calculated
to get a distribution around the body.

In order to begin the boundary layer integration, it is first
necessary to establish the initial boundary layer velocity profile at
the stagnation point. For Blottner's method this neccesitates solving

the similar F-V equations while for Hall's method, each point in the
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profile is identically zero. For instances in which the pressure distri-
bution is expressed analytically, the integration of the boundary layer
continues along an inviscid surface streamline in increments of As
(which has units of the input geometry). For cases in which only
experimental pressures are available, the angle ¢ is first calculated
given a position on the sphere-afterbody interface. The integration of
the boundary layer then proceeds in a step-by-step fashion in increments
of the angle y, Ay, on the spherical cap until the value of

¢ at the interface has been reached. The boundary condition on the
fluid velocity at the edge of the boundary layer is a function of ¢ only
and is obtained at each step during the integration from subroutine
SPHCAP. The integration of the streamlines begins at the sphere-
afterbody interface.

The boundary-layer profile convergence test is then applied after
each iteration of the solution. This computer program employs two
options with which to define a converged solution. One option requires
that the skin friction parameter, [Cf./§;[]m, change by less than 0.5
percent between successive iterations in order for the solution to be
considered to have converged. The other option requires that the
velocity at each grid location change by less than 0.1 percent from
the previous iteration.

Once the solution has converged, the edge test is overformed. This
test effectively determines whether the point at the edge of the boundary
layer spans the total thickness. There are two options regarding the
edge test. One option requires that the velocity at the grid location

just inside the imposed boundary-layer edge be at least 99.95 percent

as
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of the velocity at the boundary in order for the imposed thickness to be
adequate. The second option requires that the skin friction parameter,
[Cf-/ﬁ;i],at the edge be less than or equal to 0.005. If the option
employed should fail, an additional point is added at the boundary-layer
edge of both the present and previous computational station. The .
velocity at the outer grid point of the previous station is assigned

the value of the edge velocity at that station. With the addition of
the point at the edge, the calculations for the present station are re-
peated. This procedure is followed until both tests have been satisfied.
[f the number of points added at the edge should eventually exceed 50,
the step size in the normal direction is doubled and every other point
within the boundary layer is discarded. At this time the step size
along the streamline is also doubled.

Three methods are available with which to integrate the inviscid
streamline differential equations. The predictor-corrector method of
Milnes (Ref. 12) features rapid execution and has been incorporated into
the computational code. This method, however, is not self-starting
and makes no check for truncation error (see SUBROUTINE MILNES). The
method of Gear is used to generate the starting values. Gear's method
(Ref. 12) is useful for instances in which a stiff system of first-order
differential equations is being integrated (see SUBROUTINE DGEAR). The
last method is the fourth-order Runge-Kutta method. This method is not
as well suited to stiff systems because the step size becomes nrohibi-
tively small in the attempt to minimize the truncation error during

integration (see FUNCTION KRUNGE).
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The boundary layer is integrated in increments of As along a
streamline. The boundary condition on the fluid velocity at the outer
edge is obtained from subroutine INVISD. If experimental pressures are
supplied, a second subroutine, SPHCAP, provides the necessary condi-
tions for points on the spherical cap. The integration of the boundary
layer continues up to the point at which [Cf'JE;L]w reaches or passes
through zero.

At larger angles-of-attack, the streamlines auite frequently wrao
around the body so rapidly that it is difficult to resolve the boundary
layer at points further down the body. A technique which employs a shift
from the windward streamline may be implemented in order to accomplish
this. The integration of the boundary layer continues along the wind-
ward streamline to the input axial position, XMAX. At this point the
circumferential angle is changed from zero to one degree. From this
point on the integration continues along this newly defined streamline
to the separation point. With this technique it is possible to trace
streamlines that otherwise would have been unobtainable.

The separation point along a streamline is approximated by linear
interpolation using the last two converged solutions since the boundary-
layer profile frequently fails to converge once in the separated region.
This entire procedure is repeated for each of the Streamlines. The

total number of streamlines is an innut parameter called KBM.
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SECTION 7
RESULTS AND DISCUSSION

In order to illustrate the validity of the techniques employed in
the computer program, results are presented for a sphere, ellipsoid of
revolution at an angle of attack and a sphere-ogive-cylinder configura-
tion at an angle of attack. Each test case represents a step up in the
complexity of the analysis. The results for each geometry consist ori-
marily of a comparison between the solutions obtained by both Hall's and
Blottner's methods. Additional results generated for the ellipsoid of
revolution at two different angles of attack are compared to fully three-
dimensional boundary-layer calculations. A1l computations were performed
on the IBM 370/165 digital computer at North Carolina State University.
Computer times in this section are in CPU seconds. A1l cases start with

40 points across the boundary layer.

7.1. Sphere

The sphere geometry provides the opportunity to validate the com-
putational code itself. The comparisons presented in Tables 3.1, 3.2,
and 7.1 serve as verification. Results generaged on both a cylinder

and a flat plate compared quite well with the accepted values.

7.2. Ellipsoid of Revolution

The ellipsoid selected for this case had a thickness ratio of 1/4,
a total length L = 2a, and was examined at both 12° and 30° angle-of-
attack (see Figure 7.1). The potential solution (Ref. 13) was available
in the form of an analytical expression (see Appendix A.6). For this

case, only the differential equations in (2.9), (2.10) and (2 31) were
48
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Table 7.1. Effect of Convergence and Edge Criteria on Skin Friction
for Sphere in Incompressible Flow

l(: 7R
Hall f eL]w Blottner

As = 0.05 An = .0471 As = 0.05 An = 0.11539

Y NC =20 NC =1 NC =0 NC =1
20. 2.578 2.579 2.710 2.573
40. 2.430 2.418 2.431 2.417
60 2.150 2.149 2.150 2.149
80 1.656 1.656 1.654 1.657
90 1.249 1.276 1.271 1.271
100 0.650 0.645 0.640 0.642
104 0.202 0.193 0.226 0.226

integrated since analytical expressions for the streamline angle, Equa-
tion (2.18), and its circumferential derivative, Equation (2.39). were
available (see Appendix A.7). For these cases, As = 0.05 and An = 0.0471
were used for Hall's method, and As = 0.05 and An = 0.115385 for Blottner's
method.

The results of both Hall's and Blottner's methods are presented for
a variety of streamlines on this configuration in Table 7.2. This
table includes results that were obtafned from the streamline shifting
technique described in the section of this thesis labeled DESCRIPTION
OF COMPUTATIONAL METHOD. XMAX is the axial position at which a stream-
line shift from a circumferential position of zero to one degree was
made. The results of both methods agree quite well despite the fact

that the step size along a streamline differs between the two methods
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Figure 7.1. Ellipsoid of Revolution
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Table 7.2. Comparison of Separation Points Between Hall's and
Blottner's Methods on Ellipsoid of Revolution with
Thickness Ratio 1/4 at 30° Angle-of-Attack

Points Computer Separation
Method Beta XMAX/L Added Time (sec) X/L )
Hall 20.0 -- 52 6 0.209 143.28
50.0 -- 55 7 0.222 142.76
0.0 0.30 53 13 1.363 104.42
0.0 0.50 49 13 1.626 95.89
0.0 0.80 48 14 1.857 82.18
Blottner 20.0 -- 3 7 0.212 143.94
50.0 -- 3 7 0.220 142.43
0.0 0.30 1 12 1.366 104.15
0.0 0.50 2 12 1.640 97.46
0.0 0.80 0 12 1.857 82.16

by a factor of 20. Hall's method generally required a greater amount
of computational time. This is most likely due to the greater number of
points that had to be added at the imposed boundary layer edge.

Tables 7.3 and 7.4 compare results generated by the axisymmetric
analogue using Hall's and Blottner's methods to the three-dimensional
boundary layer calculations of Wang (Ref. 13). In both cases the com-
parison is increasingly degraded as the leeside of the body is approached.
In this instance, both tables suggest that the axisymmetric analogue
yields quite good results on the windside of the body. The separated
region for this case is shown graphically in Figure 7.2. The separated

region as calculated by Wang is also included for comparison.
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Table 7.3. Comparison of Separation Points Between Hall's Method
and Three-Dimensional Boundary Layer Calculations on
Ellipsoid of Revolution with Thickness Ratio 1/4 at 30°
Angle-of-Attack

Circumferential Separation, ¢, (Degrees)

Axial Station (X/L) Hall's Method 3-D Results
0.209 143.28 131.25
0.222 142.76 130.00
0.328 132.56 125.50
1.363 104.42 102.50
1.626 95.89 95.00
1.857 82.18 82.50

Table 7.4. Comparison of Separation Points Between Blottner's Method
and Three-Dimensional Boundary Layer Calculations on
Ellipsoid of Revolution with Thickness Ratio 1/4 at 30°
Angle-of-Attack

Circumferential Separation, ¢, (Degrees)

Axial Station (X/L) Blottner's Method 3-D Results
0.212 143.94 131.25
0.220 142.43 130.00
1.366 104.15 102.50
1.640 97.46 94.50
1.857 82.16 82.50
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Figure 7.3 depicts the variation of [Cf ReL) in the windward plane
(V)
for the axisymmetric analogue using Hall's method and Wang's fully three-
dimensional approach for an angle-of-attack of 12° (Ref. 5). The two

methods compare reasonably well,

7.3. Sphere-QOgive-Cylinder

This configuration, whose geometry is depicted in Fiqure 5.1, was in-
put to the program in dimensionless form. The normalizing quantity was
the cylinder radius which measured 3.8 inches. The total non-dimensional
body length was 17.5. This geometry was investigated at 45° anqle-of-
attack. The experimental pressure data consisted of discrete pressure
coefficients distributed along 30 axial stations, each having 10 circum-
ferential stations. Pressure data for the region 0 - x < 13.75 was cal-
culated by the USSAERO panel method while the pressure over the section
0.92 < x < 17.5 consisted of actual experimental pressures obtained from
the wind tunnel. Before implementing these pressures into the computa-
tional code, it was necessary to smooth and interpolate the data in the
region where the pressures overlapped. Interpolated data were used to
form additional axial stations near the nose since large pressure grad-
ients are present on the forward portion of the body. This reauired
the addition of four more axial stations in that region (the resulting
pressure coefficients as well as the remaining program inputs are pre-
sented in Appendix A.22).

The technique developed to represent the pressure distribution on

the spherical cap by a 10-term Fourier cosine series was found to perform

only marginally. The series provided continuity in the pressure coefficient

across the interface (when the quadratic spline was first emnloyed) but

did not necessarily provide continuity in the related derivatives. In instances
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in which the pressure derivatives were not continuous across the inter-
face, the one-dimensional quadratic spline technique was extended from
the interface to the stagnation point to model the pressure variation

on the spherical cap (see SURFACE PRESSURE DISTRIBUTINN). The resulting
pressure variation was a function of the circumferential position on

the interface. Despite this, the streamlines in this region were still
assumed to follow spherical meridians.

The doubly quadratic spline technique employed in this computer
program was found to model the pressure coefficient variation quite
satisfactorily. This technique requires that the axial derivative of
the pressure coefficient at the interface and body end for each cir-
cunferential plane be known. While the pressure coefficient across the
interface was continuous, in most cases the axial derivative was not
and, hence, was also supplied as program input (rather than calculated
in the program).

The streamline angle and its circumferential derivafive were cal-
culated in this case by numerically integrating Equations (2.18) and
(2.39). These equations are functions of the inviscid edge velocity,
the pressure coefficient and its derivatives. These parameters were
provided by the spline fit. Although the calculated second derivatives
of the pressure coefficient in the circumferential direction are con-
stant in the interval in which the quadratic is used, they were found
to be accurate enough to be used in the integration of Equation (2.39).
Table 7.5 provides a comparison between the calculated separation
points using Hall's and Blottner's methods. The corresponding separa-

tion points agree very well. Note that for the cases of ¢ = 145° and
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Table 7.5. Comparison of Separation Points Between Hall's and
Blottner's Methods on Sphere-0Ogive-Cylinder Config-
uration at 45° Angle-of-Attack

Points Computer Separation
Method Beta Added Time (sec) X/Re¢ ) 1)
Hall 50 39 9 0.2158 119.15 --
75 0 8 0.1777 125.32 --
100 3 8 0.1562 121.34 --
145 5 8 -- -- 115.14
160 27 8 -- -- 119.64
Blottner 50 3 8 0.2159 119.21 --
75 3 8 0.1763 123.75 --
100 1 8 0.1564 121.66 --
145 2 8 -- -- 115.16
160 0 8 -- -- 119.25

160°, the flow separates while on the spherical cap. If the pressure
distribution had been truly axisymmetric, the angle of separation, y,
would have been identical in each case. The computational time required
for this configuration was greater than that for the ellipsoid of
revolution though still quite reasonable.
Information relative to the step sizes and spacings is given in

o

Table 7.6. The step size on the spherical cap was Ay = 2° in each case.

57




—

Table 7.6. Computational Step Sizes and Spacings for Results in
Table 7.5
An Steps to
Method Beta As or An Separation
Hall 50 0.001 0.003846 109
75 0.004 0.015385 50
100 0.004 0.007692 52
145 --- 0.007692
160 --- 0.003846 55
Blottner 50 0.001 0.1153846 136
75
100
145 -- 0.1153846 59
160 --- 0.1153846 60
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SECTION 8
CONCLUDING REMARKS

A method is developed for calculating laminar boundary layers along
inviscid surface streamlines on axisymmetric bodies at angles of attack
in incompressible flow. By application of the axisymmetric analogue
concept in the present technique, a substantial savings in computer time
over fully three-dimensional boundary layer techniques may be realized.

The boundary layer integration techniques of Hall and Blottner were
found to compare exceptionally well with each other on each of the
geometries investigated. Results generated on the windward plane of an
ellipsoid of revolution with thickness ratio 1/4 and angle of attack of
12” compared satisfactorily with results generated by a fully three-
dimensional technique. The separation points calculated by the present
technique for a variety of streamlines on the same ellipsoid of revolu-
tion at 30° angle of attack were in fair agreement to those generated
by a three-dimensional technique. The comparison was generally better
on the windside of the body.

The series expression used to model the pressure coefficient on the
spherical cap of the sphere-ogive-cylinder configuration performed only
satisfactory. The technique preserved continuity in the pressure co-
efficient across the interface (the point at which the quadratic spline
technique was implemented) but did not provide continuity of the axial
derivative. To circumvent this problem, the one-dimensional quadratic
spline was extended to the stagnation point on the spherical cap. De-
spite this, the assumption of spherical streamlines was still made with

reasonable accuracy. The doubly quadratic spline renresentation of the
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pressure coefficient on the afterbody was found to perform quite well as
long as an adequate number of pressure stations were input. Oscillations
in the pressure function were generally less frequent than might be
expected if other techniques had been used.

The relative inexpense, coupled with reasonable accuracy makes the
present method attractive for preliminary design studies. Further com-
parisons with fully three-dimensional boundary layer calculations are
necessary in order to more thoroughly evaluate the applicability of the

axisymmetric analogue in subsonic flow.
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LIST OF SYMBOLS

an,bn,cn,dn coefficients defined in Equation (4.3)

Al’Bl’cl’Dl’El coefficients for finite-difference boundary-layer
A Be.Co.Da.E equations, defined in Equations (3.8), (3.9), (3.12),
2°72°72°72°72  (3.13)

éll unit vectors on body surface along body meridian
given by Equation (2.2)
és’és’é unit vectors in streamline coordinate system given
n by Equations (2.3), (2.4) and (2.1)
éx’ér’é¢ unit vectors in cylindrical coordinate system, (see
Figure 2.1)
2Tm
Cs skin friction coefficient, o
%% total derivative along streamline
F ratio of local velocity to velocity at boundary-layer
edge, as defined by Equation (3.6), dimensionless
h scale factor in B direction, dimensionless
K arbitrary constant for Equation (3.1) and (3.2)
L body length, dimensionless
n coordinate normal to body surface and streamline
p dimensional pressure, 1b/ft’ or N/m?
r body radius, dimensionless
Re¢ radius of cylinder in sphere-ogive-cylinder con-
figuration, dimensionless
Rper radius of spherical cap, dimensionless
pu_L
ReL freestream Reynold's number, T
S distance along streamline, dimensionless
u local fluid velocity in boundary layer (in direction

of a streamline) ft/sec or m/sec

63




U inviscid fluid velocity, ft/sec or m/sec
v local fluid velocity normal to streamline and body
surface, ft/sec or m/sec
v parameter defined by Equation (3.5)
XsY,2Z body geometry coordinate axes (see Fiqure 2.1)
Y(1) axial position, x, dimensionless, ft or m
Y(2) circumferential angle, ¢, rads
Y(3) streamline angle, 6, rads
a0
Y(4) 3|,
Y(5) en 58
X
Y(6) transformed streamline coordinate, ¢
o angle of attack, degrees
8 coordinate normal to streamline and tangent to body
— ) 2 due
B pressure gradient parameter, U;'Tﬁf
r body angle, radians (see Figure 2.2)
£ %gagiformed streamline coordinate as defined in
n transformed coordinate normal to body surface
defined in (3.2)
¢ circumferential angle (see Figure 2.1), rads
8 streamline angle (see Fiqure 2.3), rads
17 angle between stagnation line and radius vector (see
Figure 4.1), rads
P density, slug/ft? or kg/m’
u coefficient of viscosity, slug/ft-sec or kg/m-s
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Subscripts

J
SP

Superscripts

*

freestream conditions

edge of the boundary layer
effective value

at the wall

initial value

streamline grid index

value at sphere-afterbody interface
normal grid index

value at stagnation point

denotes a quantity from a previous iteration

denotes a dimensionless quantity
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APPENDIX A, EQUATIONS

1. Derivation of Fquations (3.3) and (3.4)

Blottner's method involves the boundary layer eaquations written in
F-V similarity form. These are obtained by application of the Levv-

Lees transformation which is defined as

1S u
E(s) = Kowu, | =5 r? ds (A.1.1)
0 )
and
ugprn _
n(s,n) = - /K (h.1.2)
v 2F,

for incompressible flow. The transformation operators may be con-

structed and expressed as
d Ue 2 0 an o
93 i} u . (A.1.3)

and

Tt (A.1.4)
Y28 Vonu
where the arbitrary constant, K, has been assigned the value
K= 1/pwu_ . (A.1.5)
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The dependent variable in Blottner's equations is defined as
F=ulug . (A.1.6)

Application of each transformation operator and the definition of F to

the continuity equation,

3(ru) v _
5s +r an 0 (A.1.7)
yields
2
e 2 I)(rue_F) an oF uer P 1 oV _
[r'r BY; “""’;)'S‘ Y‘Ue“a-n""—“———-—-——gﬁ— . (A.1.8)
' V2 Vouu,

Note that neither ug nor r are functions of the normal coordinate n.

Expanding this equation yields

u du u rip
Gg r’ FUe g£'+ ueF %; tir 753 * rug %2 %E ¥ %—-— : %l =0
v > , ’ n Y 2E /puuw n
(A.1.9)
This equation may be rewritten as
2.3 2
Y Jor  Fdr, £ B an oF L Y™ P 1 v
GNEt rd T Vet an Y o a0 (ALI10)
’ ’ e - 2f, oUU_

By application of the product rule, this equation may be written as

du u u r?pv
R Tl RS
- Y O e ! Y2E Vouu
u
. ™ g .9 [an}
i o 2o} -0 (A.1.11)
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The derivati’e in the last term of this equation may be rewritten as:

an |3s an 9In |9s uerp lds JoF “WGEI:
dr e 1 U df
+—d?—'—‘__“2‘{.‘ "'-“"_"a'g . (/\.1-12)
v 2E /puum C /2 Y puu
which becomes, upon making use of Equations (A.1.1) and (A.1.5),
2
2 fon) or2 Y, Yeldr YT
an |9s u, dg u, dr  2u.’
Substitution of this relation into Equation (A.1.11) yields
__B_E.g.f.ﬂ.q.i.c‘_l‘i.{,i __1).2._8_]1}: +__.lifi_.-,.__l--,_
du
fF_e Fdr F _
- u & v + 5F = 0o . (A1.13)
This equation may then be written as
oF Vv _
2¢ §E+F+%—O . (A.1.14)
where
ull) pvu‘l)
veog [P0 e 1 (A.1.15)

r? S -
9s Ue J2r puy, U T

Application of the transformation operators in (A.1.3) and (A.1.4)

and the definition of F to the momentum equation
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du "2
ou qu _ e I 37U
u ;)S + v an = ue d——-—s + S ——73n' (A116)

u'rcp” 2
e uo’F
+ 2roIL D T . (A.1.17)
This may be expanded to give
? 1,7 2 2
(uerF) %_ “._r_I F , pop O an oF vu_2rp oF _ (ur)? du
u, df u, of Ye" s n /2—5 /o an u, d¢
uarz ’
e 9F
+ Z{Zum —-a?lz- . (A.l-lg)
This equation may then be rearranged to yield
2r , Qg N A A
R A e 3s 3 " T Ut I A
e ' e" ! £ e Vouu " e 7 "
(A.1.19)
or, finally,
DF 2 = oF °F _
2fF 5 + (FF - 1) p+V T 3Tt 0 (A.1.20)

where 3 is the pressure gradient parameter and is defined as




2. Derivation of Equations (3.8) and (3.9)

At all points off the stagnation point, the full system of F-V

equations must be solved. The continuity equation,

. oF , oV _
2¢ -SE‘PE‘—"'F-O (A?.l)

is evaluated at the point (i + 1/2, j - 1/2) and may be expressed as

oF . OF
pe.  —livny limgr v
1+ 2 on i+5,5-1
R IMATS IS T I ML IV S L
! _

Substituting second-order accurate expressions for the appropriate
quantities yields
(v

o Wi Ve gey)
1 L] J - l An

£y,

7z ([Fien,g ~ FiLy P Rienyg-1 o F

F. .+ F. . + . .+t ..
+ ( itl,J 1+1,J'i F1,J_,J34J:lz,= 0

After rearranging, the continuity equation may be expressed as

A F

oFi+1,5-1 % B

2Fie1,5 * CVin, 51t BVie 5 7 0 (h.2.2)

70




where
A, = An(l, + f.i+,2//\€)
B, = An(% + &“,?//\f.)
C, = -1
E, =1
and
D, = An(-% + &i+g/AE)(Fi,j + Fi,j-l)
The momentum equation,
2F g-;+vg-g+§(rz - 1) --g%g:o (A.2.3)

is evaluated at (i+',,j). The terms of Equation (A.2.3) become, respectively,

T I S B RRA N [T I
1 I . i+, 2 Ag i

o’k

an’ X4 * 5_7 . ’ (A.2.4) {

N

ith, ]




Linearizing the first three terms using the Newton-Ranhson method yields

2¢, F. _3F =fiﬁi.(zf F - B2 - )

it ¥, 0L, o Af i+1,5 41,5 T TieL,g T iy

TN

oF 1 SF’ oF 15 (aF)L
V— =V R = + =V o

an 1+1§3J 2 ]+23J 3” i+1,j aﬂ .3 2 i+ sJ \an .+1,j

1y aF
2 its,j an i+1,3

B(F? - 1 i (2F.,, . F F2 . 4 F?
B - )|i+’§,J T2 i+1,j i+l,j Fi+1,j i 1) . (h.2.5)

Substituting second-order accurate finite difference expressions in the

second of Equations (A.2.5) and the last of Equations (A.2.4) oives,

respectively,

oF | 1 Fien,ger ~ Fivng-1 ) Figer - Ry
v =1y s -

3”|i+% j 2 i+, An An

Sy f.LﬂLi:L'_F_iil,uiﬂJ 1y ij_,l.,.m ;51_1.-_1-_11
2 1+I/21‘] 2An —l 2 1+':w\] L 2/\”

and
3°F| 1 [;i+1,j+1 S PR, T o gt R ga
Cvva = a e e 7 S
an |i‘”i,J 2 L An An

After substituting the appropriate expressions into [quation (A.2,3).

solving for the unbarred quantities and rearranqing, the equation may be

written as

B,F C,F + I

MFien,i-1 * BaFiens * Gifierin =D

Vi © N
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where
M
By
, ‘1
. £y
and
D

e

no| =

1 1 .
(Lt mV, )
+ Ar? Ai+1,j (E'H" + 251+]é//\2)
1 1 =
7 (-2 M Vi )
Ay a1 7 Figer t Fisnyger ~ Fien,g-1)
_ 1,25 -
(Fise1 = 2Fi 5 * Figor) * 9 n® Byyy [(1 MUY

2 _];_ I r I
(1 - Fi,j{} P Vi (Fianger 7 Fieng-r!

At 6. (F2 0 o+ F2 )/Af
N, (g s Ry e
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3. Derivation of Finite-Difference F-V Similarity
Equations at Stagnation Point

At the stagnation point 7 = 0 and the F-V equations reduce to

aV _
5ﬁ'+ F=20 (A.3.1)
for the continuity equation and
oF | = /r2 3°F _
) “—-an + B (F -1) - a‘r']-y =0 (A .3.2)

for the momentum equation.
The continuity equation is evaluated at (j - 1/2) and may be

expressed as

V., ~ V. F. + F,
_J__A__.l:l + ..(_J__?J.;l.) -0
n .

This may be rewritten as
Vo= Ve -0 (Fos Fi_l) . (A.3.3)

The momentum equation is evaluated at (j) after first being
linearized using the Newton-Ranhson technique. The equation may then

be written as

F LGk gOF oo -
Vv a Vv 3 - v ot P (2FF - F? - 1) -
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where the barred quantities denote the expressions from the previous

jteration. Substituting appropriate finite difference approximations

for each of the above terms yields

=3

F. , - F. F. , - F. F. , - F.
V. j+1 j-1 + 7 j+1 i-1) v _Jj+l j-1
. j 2An i 24n h| 2An
. F . - ZF . + F .
- = =? j+l j -1 _
+ - . = - =

Solution of this equation for the unbarred quantities yields

AF. . +BF. +C
J

i1 * B EV, = D

1F5e0 P HY; 20 5
where

A =2+/\V|V].

B, = -(4 + 4 BAn? ?5)

1
Cl = 2 - An Vj
[1 = Arl(Fj_l - FJ+1)

dand

?Y 2An?

il

D, = -An V. (F

1 j (Fger = Fyog) - R0
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4. Derivation of Equations (3.10)

and (3.11)

Hall's method involves solving the boundary layer equations written

in terms of dimensionless primitive variables.

to obtain these equations are

s* = s/L
n* = /Re /L
u* = u/u_
vk = /”ﬁg['v/uu
r* = r/L
and

ul

e (e

and a star denotes a dimensionless quantity.

formation operators are constructed as follows

n
*

)

s

and
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Accordingly, the trans-




Application of each transformation operator to the continuity equation,

afru) v
55 tTan =0

yields

_ui'll: ?_(_rl"_!*il + rrL Re'— ) ooV =0
L as* L an* /—Rzl-:

which will simplify to

a(r*u*) ., dv* _
3s% t e = 0

Note that r is not a function of the normal coordinate n.

Application of each of the transformation operators to the momentum

equation,
du 2
qu ou e , U du
..._+ — = — —_—
bs * Van T Ve ds T o’
yields
Vi F— - 2 >
e e dur e Y Re g M WeT Ly Rey gy
L s* TR L on* L “e ds* o | 3n*
€
which may be simplified to
du * 2
. Ou*r *M= x € . 3°u*
UT gex T VT gaw T Ve Gow t apee




5. Derivation of Equations (3.12) and (3.13)

The nondimensional continuity equation,
3(hu) , BV _
3s +h an 0

(the stars have been deleted for clarity) is evaluated at the point
(i +1/2, j - 1/2) in the computational grid. The equation may then

be written as

%[Bguz +a?u) +h,, %1 =0
Solingg % liwygen TR M o

substituting second-order accurate expressions for the appropriate

terms yields

1MWy, - g 5 g g0 - )y 5
2 As As
v .-V, .
ith,] ith,g-1) o
¥ hl+'2 An 0
Solving for V1+g,j gives

- - — _An - -
Yit,§ T Vivg,g-1 7 Zhsh,,, E‘m (Ui, 5 % Ui, go1) = 0y Uy 50 “i,j-l)]'
2

After rearranging . the continuity equation may be rewritten as

AoUiet i ¥ Boliay,5-1 * CoVin,, 5 EoVin 4.1 T
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where
- /\nhi+1
2 2Ashi+%
5 - A"hi+l
2 2Ashi+%
C2 =1
E2 = -1
and
Anhi
b2 = amsh (Ui,g * Y51
2

The nondimensional momentum equation,

du 2

au au e 9°U
oy 2 £,
Y T Von T Ve ds T oan?

is evaluated at the point (i + 1/2,j). Taken term by term, this may be

written as




2 2

2%y

on i+, ] 2 |9n i+1,] an i

Substituting second-order accurate expressions for the remaining

derivatives yields

2‘_‘. = ——1 u - u tu -u
anf.,, . 4An |Ti+l,5+1 0 Ti+l,§-1 0 i+l Ti,3-1
1+5,] _
and
3%y =1y - 2u +u +u
an?l. j 2807 [Ti+l, 4l itl,j = Titl,j-1 i, g+l
29

B *‘H,j—ﬂ

Linearizing using the Newton-Raphson method yields

U,y .
du - i+1,] S 2
Udsl., . [ As } Uiel,5 ~ ZAs (Uie1,5 Y550
1+5,]
and
V. .
u S bt T A e - 4 -
Van i+, 4An (ui+1,j+1 u1'+1,_i-l ! ui.j+1 ui.j—l)
‘29
Vi . )
g (Yien, 541 7 Yien,g-1 T Yigen T Yi5
Vol s
- ————2—””’ m

i (Uia, 541~ Yiel,g-1 * VL5 T YiL5e1)
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After solving for the unbarred quantities, the equation may be written

as
AfUicr.i-1 * BiYien, i C%en e F E1Vien,g T D
where
A = o dted 1
1 4An 2An*
o o lirlg, ]
1 As An”
c, = vi“i!j_ . 1
1 4An 2An?®
E1 - (“i+l,j+1 - Yi41,5-1 * Yi,541 7 ui,j-l)/Mn
and
-2 2 - o
L TR RIS G 1l SRR
1 2hs P+, 4An
u? - u?
e e, e Bt )
2hs 26n?
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6. Derivation of Potential Solution for Ellipsoid of Revolution

In cartesian coordinates, the velocity components in the x, y, and

z directions may be expressed as {Ref. 3)
u = Ejfic;.s..a_ L}? + M {5_ - 1} L,_C_Q_S_Q aﬂn?

i 2u_ sin a x 1\2 L risin’ g 2u, cos «a x l}
y 7B, ||la Y RZ 7oA la Y

| 2
\
X r EOS ¢ azpz
2
and
uoo ] B Y esing 2SN sin g cos o] /oo
2 2 - R, la R, 2B, R, ap

where p? is defined by

and
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(see Figure 7.1). The parameters Ao and B0 are related to the eccentricity

and are defined as follows

1 - ¢e? 1 1
R {'2’ m (1) - e}

and

_ 1 (1 -e?) [1 + e
Bo =7 " T 2e " ]

l-e
where

e= /(1 - (b/a)?)

In cylindrical coordinates, the velocity components may be expressed

as

[~
]

u cos ¢ + u_ sin
y b . ¢

and

u

¢ Uz cos ¢ - uy sin ¢

Substitution of the appropriate parameters yields

2u  COS « 2u_ sin a 2
S R P S r_ > ____|x._ 2.2
“r”{ 7R [a IJR 7B .[a 1} cos ¢}/°p

and

2q“ sin w sin ¢

u - -
¢ 2 - BO
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The component of the total velocity along a body meridian, u_, may be

m
obtained from

Substitution of the appropriate velocities yields

2u_ cos o 2u_sin « \
= i L o L 0 /a7p?
“m"{z-Ao R, 2- B [a 1J°°S’}/ap

The edge velocity, Ugs may be obtained from

Substitution of the appropriate expressions for the velocity components

un and u, then gives

¢

) {2uw cos a . 2u sina }?/// ,
. £ ) L
e 2 - Ao R2 2 - Bo a

2u_sin a sin ¢}’
+
2 - Bo
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7. Derivation of Analytical Expression for Streamline Angle
and Circumferential Derivative for Ellipsoid
of Revolution

The streamline angle is related to the circumferential and meridianal

velocity components and may be shown to be

u
tan O -0

u
m

Substitution of the appropriate velocity components (from Appendix A,

Section 6) yields

2 2
sin a sin qJ[i - 1) + [Ll
a R
O = 2

r 2-Bo X
= C0S 0 5——— + Sin a cos ¢ (E-- 1)

tan

R 2 - A0

[aN]

Application of the product rule to this equation yields

i ? ;
sin « cos’ 0/[5 - 1) + [_r_]
a R2

—

9_@} - . - .
Ay - 2 -8B ]
S €OS ot [m—i2 4+ sin a cos ¢ |& - 1
2 2 - A J a
{ Y ]
sin a sin? ¢ {§ - 1]
cos ¢ + ——
{W [2 : Bo x }
5 €O0S « |z ——=— + sin a cos ¢ [— - 1J
R, 2 Ao P) J
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APPENDIX B, INPUT PARAMETERS AND SUBROUTINES

1. Description of Input Parameters

Required inputs to the main program consist of the following

parameters (note that all parameters describing the body geometry must

be input with the same units).

RPER

XNOSE

BL

XINT

DST

OPSI

ALPD

NBS

NT

radius of spherical cap (dimensionless. ft or m)

distance from body nose to origin of body axes

(see Figure 4.1)(dimensionless, ft or m)

body length, L (dimensionless, ft or m)

axial location of sphere-afterbody interface

(see Figure 4.1)(dimensionless, ft or m)

maximum)step size along a streamline, As (dimensionless,
ft or m

step size in degrees of arc on spherical cap. Ax (deqrees)
effective angle-of-attack, «,¢¢ (deqrees)

Boundary Layer Method
0 for Hall's method

1 for Blottner's method

Edge Test
0 for point added at edge when velocity at point next
to edge is less than 99.957 of point at edge

1 for point added when (C¢ /RGL)e is above 0.005
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NC Convergence Test
0 for convergence based on (Cf /ﬁg[)“)changing by
less than 0.5% between successive iterations
1 fer convergence based on each point in profile

changing by less than 0.1%

MOT Method to Integrate Streamlines
1 Milne's predictor-corrector method
2 Runge-Kutta method

3 Gear's method for stiff system of differential

equations
MAXS number of stations to be computed
KP N for velocity profiles printed every Nth station

0 for no velocity profiles printed

KPH 1 for iterative profiles printed after each Nth
station

0 for no iteration profiles printed

KPO Print Qut Type

0 for ordinary print out

. 1 for additional print out
KBM number of streamlines to compute
KBMS Indicator for Streamline Shifting

0 for ordinary run in which a circumferential position

at the interface is specified
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PHIPD

XMAX

IS0

1 for a streamline shift to be made from the windward
streamline to a circumferential position of 1 degree

at XMAX (which will be input as PHIPD)

circumferential position at interface (degrees)

(for KBMS = 0)

axial position at which the streamline shift is to

be made (for KBMS = 1)(dimensionless, ft or m)

Type of Integration to be Performed
0 for integration of both boundary layer and streamlines

1 for integration of streamlines only.

Subroutine PRESS reads in the number of axial and circumferential

pressure stations as well as the pressure data (which must be in the

form of a pressure coefficient). The pressure data is read in one com-

plete axial station at a time. The parameters relevant to this sub-

routine are also shared with the pressure fitting routine and are as

follows:

NCS

NAS

PHI(j)

X(3)

number of circumferential stations

number of axial stations

array of circumferential pressure stations

(NCS values to be input)(deqgrees)

array of axial pressure stations (NAS values to be

input) (dimensioniess, ft or m)
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CP(i,j) pressure coefficient data

i = (1, NAS), j = (1, NCS)

The axial pressure derivatives (at the interface and body end) for each

circumferential plane are read in two at a time.

CPX(1,j) axial derivatives at interface and body end

CPX(2.3) 5 = (1, Nes)




2. Subroutine BGEOM

—

Subroutine BGEOM computes the geometric properties relative to the
body axes used in the streamline and boundary layer calculations. For
an input axial position, subroutine BGEOM computes the body radius and
its derivative, and the body angle I' and its derivative (see Figure 2.2).

A call to subroutine BGEOM has the form
CALL BGEOM (X,R,DRDX,GM,DGX)
where the input argument is
X axial location, x

and the output arguments are

R body radius, r

DRDX dr/dx

GM angle T' = tan~! (dr/dx)
DGX dr/dx .
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3. Subroutine BLOTNR

Subroutine BLOTNR evaluates the boundary layer parameters for use
in Blottner's method. These parameters consist of £, the transformed
coordinate along the streamline and B the pressure gradient term.

On the spherical nose, the expression for ¢ is integrated by the

Runge-Kutta method to yield €i+1 and Ei (see BOUNDARY LAYER METHODS).

+1
On the afterbody, £i+1 is evaluated by the integration routine used in
the main program and then becomes an input to the subroutine.

A call to subroutine BLOTNR has the form
CALL BLOTNR (PSI,S,Y,F,DEXI,EXIH,BETA,DST)

where the input arguments are

PSI position on spherical cap in radians of arc length, ¥
S distance along streamline (used only on afterbody), S
Y(3) array of dependent variables (j = 1,6)
F(j) array of first derivatives of dependent variables

(j =1,6), F gg
DEXI transformed step size along streamline, Af = 6i+1 - &i
NSt step size along streamline, As

and the output arquments arce

EXTH trans formed coordinate at mid-point of interval, (i+‘
2
BETA pressure gradient parameter,
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4. Subroutine FCN

Subroutine FCN computes the first derivative for each of the de-
pendent variables to be used in one of the streamline integration
routines.

A call to subroutine FCN has the form

CALL FCN (N,S,Y,F)

where the input arguments are

N number of differential equations
S distance along streamline (indenendent variable), S
Y(j) array of dependent variables (j = 1,N)

and the output argument is

F(j) array of first derivatives (j = 1,N), F = gﬁ
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5. Subroutine COEFF

Subroutine COEFF calculates the coefficients to the appropriate
finite-difference boundary-layer equations. These coefficients are func-
tions of both the normal and tangential grid spacing, the pressure
gradient, and the velocity profile at the previous computational station
(see BOUNDARY LAYER METHODS).

A call to subroutine COEFF has the form
CALL COfIF {JMAX,AM,BM,CM,DM,AS,CS,DS W WL .KB)
where the input arguments are
JMAX number of grid locations in normal direction

W(j) matrix of present iterative values of transformed

velocity components (j = 1,JMAX)(dimensionless),
Yitl,
WL(j) matrix of transformed velocity c ~ponents at last

integration station (j = 1,JMAX)(dimensionless),

u. .
LED)

KB indicator variable
1 for calculation of coefficients of Blottner's
similarity equations at stagnation point
2 for calculation of coefficients of Blottner's non-
similar equations

3 for calculation of coefficients of Hall's equations
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and the output arguments are

AM(G) )
BM(3)
M(3)
DM(j) r coefficients of respective boundary layer equations
AS(J)
)

DS {j)

(a1l arrays are of dimension JMAX)
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6. Subroutine INVERT

Subroutine INVERT solves a block tridiagonal system of linear equa-
tions using the modified Davis algorithm. The coupled continuity and
momentum equations form such a system.

A call to subroutine INVERT has the form

CALL INVERT (JMAX,A,B,C,D,AS,CS,DS,W,KB)

where the input arguments are

JMAX number of normal grid points

A(j)

B(J)

C(Jj)

D(3) coefficients to respective boundary layer equations
.

. (all arrays are of dimension JMAX
AS(j) y )
CS
DS(J)

KB indicator variable

1 for Blottner's method at stagnation point
2 for Blottner's method at all other points

3 for Hall's method
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and the output argument is

W(j) array of grid velocities (dimensionless)

(3= 1,0MA0), uy,)
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7. _Function KRUNGE

¢ ————

Function KRUNGE is a subprogram which uses the fourth-order Runge-
Kutta method to integrate a system of NDE first-order, ordinary differ-
ential equations with a variable step size. As a criterion for varying
the computing interval, the differential equations are integrated over
an interval of step size DSS first and then over the same interval with
two step sizes of DSS/2. The two solutions are then compared to give
an estimate of the error for each variable. If any error is larger than
EPS = £ - 04, these answers are discarded and the computing interval H
is halved. If all of the error estimates are less than EPS, the answers
are allowed and the integration process continues. In addition, the
step size is either doubled or set equal to DST, whichever is the smaller,
for the next integration cycle.

The function RUNGE is used in the main program and has the form

K = KRUNGE (Y,F,S,DSS,NDE,DST,MR)

where the input arguments are

Y(j) array of dependent variables to be integrated,
(j = 1,NDE)
F(j) array of first derivatives of the dependent

variables, (j = 1,NDE), F = dY/dS

S indenendent variable (distance along a streamline)
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DSS

NDE

DST

MR

and the output

integration step size
number of differential equations
maximum integration steo size, AS

indicator variable, MR = 1 for the previous inte-
gration interval to be recomputed with a new step

size DSS determined in the main program
arguments are

array of updated dependent variables (i = 1,MDC)
array of updated derivatives (i = 1.NDE)

indicator variable

0 implies completion of integration cycle

1 implies the integration cycle has not been
completed

2 implies the step size has been reduced to a

value below E-08 .
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8. Subroutine MILNES

Subroutine MILNES uses the fourth-order predictor-corrector method
of Milnes to numerically integrate a system of NDE first-order, ordinary
differential equations. Since this method is not self-starting, it
must be used in conjunction with an alternate method (such as the Runge-
Kutta or Gear method) to generate the starting values. The advantage
of a method of this type is that the computational work is keot to a
minimum between integration steps. This, however, is achieved at the
price of accuracy since the step size is held constant over the entire
interval regardless of the error introduced.

A call to subroutine MILNES has the form
CALL MILNES (Y,F,PCM,NDE,DST,S)

where the input arguments are

Y(i) array of dependent variables (j = 1,NDE)
F(j) array of first derivatives of dependent variables
I . dy
(j = 1,NDE), F = S
PCM temporary storage of both the dependent variables and

their fir<t derivatives at four previous stations

NDE number of differential equations
NST step size along streamline, AS
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and the output

Y(3)

streamline distance (independent variable),

S

arguments are

updated array of dependent variables at next

integration step, (j = 1,NDE)

updated array of first derivatives, (j = 1,NDE)

updated value of independent variable, S .
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9. Subroutine DGEAR

Subroutine DGEAR integrates a system of first-order differential
equations using the backward differentiation formulas of Gear (Ref. 12).
This technique is particularly well suited to situations in which the
system of differential equations may be classified as stiff. In these
types of applications, other techniques would be apt to decrease the
integration step size to prohibitively small values in an attemnt to
satisfy the allowable error tolerance. Gear's method, however, has the
property of "stiff stability” which effectively removes the limitations
on the step size. The inteqration step size is adjusted in the routine
so as to satisfy the error tolerance specified by the user. The tech-
nique used is similar to that employed in the Runge-Kutta method de-
scribed in Function KRUNGE. The method also necessitates that (in
general) a nonlinear system of algebraic equations be solved at each
step of the integration. To solve these equations, the integration
package has the option of employing a variety of iterative schemes.

A call to subroutine DGEAR has the form

CALL DGEAR (NDE,FCN,FCNJ,S,HG,Y,SEND,TOL ,METH ,MITER,INDEX,IWK,WK,IER)

where the input arguments are

NDE number of differential equations to be integrated

FCN subroutine to evaluate first derivatives of

differential equations
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FCNJ

SEND

TOL

METH

MITER

subroutine to evaluate the Jacobian of the system
of differential equations -- this parameter may or
may not be specified depending on other quantities

specified in the argument
distance along streamline, S
integration step size along streamline

array of dependent variables at present station

(j = 1,NDE)

value of independent variable at which dependent

variables are desired, S + AS

maximum error tolerance allowed between integra-

tion steps

Basic Integration Method
1 for use of Adam's method

2 for use of Gear's mgthod

Iteration Method
0 for functional iteration, internal calculation

of the Jacobian
1 for chord method, Jacobian is supplied externally
2 for chord method, internal calculation of Jacobian
3 for chord method, diagonal approximation of

Jacobian is made internally

102




INDEX

IWK

WK

IER

1 for first call to subroutine

0 for remaining calls

work vector of length NDE

work vector of length 13 x NDE

error parameter

33 for error test not satisfied due to too low
an error tolerance

66 for error test was satisfied only after HG
was reduced

132 error test failed after HG was decreased to

Tower limit .
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10, Subroutine PRESS

Subroutine PRESS reads in the pressure data used in the pressure
fitting technique. The input pressures must be in the form of a pres-

sure coefficient. The data read into the subroutine consist of the

following:
NCS number of circumferential pressure stations
NAS number of axial pressure stations

PHI(j) array of circumferential stations (deqgrees)

(j = 1,NCS)

X(i) array of axial stations (i = 1,NAS)

CP(i,j) pressure coefficient data (i = 1,NAS, j = 1,NCS)

CPX(i,j) axial pressure derivatives at body interface and

end, (i = 1,2, j = 1,NCS) .
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11, Subroutine SPHCAP

Subroutine SPHCAP computes the inviscid flow properties on the
spherical nose of the body to be used in the boundary layer integra-
tion. On the initial call to the subroutine, a check in continuity be-
tween the pressure and its axial derivative across the interface is first
made. [f the values of the parameters should vary by more than 0.003 or 4.0, re-
spectively, the quadratic spline technique is extended to the stagnation
point. Otherwise, the series expression for the pressure coefficient
will be used. This in turn will yield the dimensionless fluid velocity
which is used in the subsequent boundary layer calculations. Additionally,
the derivative of the pressure coefficient with respect to ¢ is calculated
for use in Blottner's boundary layer method.

A call to subroutine SPHCAP has the Form
CALL SPHCAP (P,CP,UE,DCPSI)
where the input argument is

p position on nose in radians of arc length form

stagnation point, o
and the output arguments are
cr pressure coefficient, Cp

UE fluid velocity at edge of boundary layer

(dimensionless), ug
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DCPSI derivative of pressure coefficient with respect
ac

_P
to ¥, dy

an additional input to the subroutine is

COE(4) coefficients used in the series expression for CP
(i = 1,10) and is specified in a data statement
within the subroutine (see SURFACE PRESSURE DISTRI-
BUTION).
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12. Subroutine MIDPTS

Subroutine MIDPTS calculates the dependent variable at the mid-
point at each of the subintervals defined within the parabolic spline
technique (see SURFACL PRESSURE DISTRIBUTION). This amounts to solving
a tridiagonal system of linear algebraic equations by the LU decomposi-
tion method.

A call to subroutine MIDPTS has the form

CALL MIDPTS (AA,BB,CC,D,YM,N)

where the input arguments are

AA(1)

BB(1) arrays of coefficients of tridiagonal system

i) [ (-1,n0-1)

D(i)

N number of discrete data points along interval to be
spline fit

and the output argument is

YM(1) array of dependent variables at midpoints

(i=1,N-1), Y
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13. Subroutine INVISD

Subroutine INVISD computes the properties of the inviscid flow
field at any point on the body surface after the interface. These pro-
perties consist of the pressure coefficient, the local fluid velocity
at the edge of the boundary layer, the first and second circumferential
pressure coefficient derivatives, the axial pressure coeffic.ent deriva-
tive and the mixed derivative. These parameters result from a quadratic
spline fit to the input pressure data (see SURFACE PRESSURE DISTRIBUTION).
The method employed is limited in application to situations in which
the number and position of the circumferential stations do not vary

between axjal stations.

A call to subroutine INVISD has the form
CALL INVISD {XX,PPH,UE,DCPX,DCPPH,CPC,DCPXP,D2PPH)
where the input arguments are
XX axial position, x
PPH circumferential position (radians), ¢

and the output arguments are

UE fluid velocity at edge of boundary layer (dimen-
sionless), Ug
aC
DCPX axial derivative of pressure coefficient, X
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DCPPH

CPC

DCPXP

D2PPH

circumferential derivative of pressure coefficient,
aC

P

;)l')

pressure coefficient, Cp

mixed axial-circumferential second derivative of
9%C
r re coefficient, —L
pressu ici " 5X30
second circumferential derivative of pressure
d’C

coefficient, 5P

other inputs to the subroutine consist of

NAS

NCS

X(i)

PHI(j)

CP(i,3)

cPx(i,j)

number of axial pressure stations

number of circumferential pressure stations

array of axial pressure stations (i = 1,NAS)

array of circumferential pressure stations

(degrees), (j = 1, NCS)

pressure coefficient data (i = 1,NAS , j = 1,NCS)

axial pressure derivatives at body interface and

end (i = 1,2, j = 1,NCS)
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14, Subroutine STAGN

Subroutine STAGN locates the stagnation point on a given confiqura-
tion. For the case of the sphere-ogive-cylinder geometry, this amounts
to calculating the Newtonian stagnation given an effective angle of
attack. For configurations having analytical pressure distributions,
the stagnation point may be calculated from analytical expressions which
must be supplied by the user (as was the case of the ellipsoid of
revolution).

A call to subroutine STAGN has the form
CALL STAGN (ALP,X0,XNOSE ,RPER)

where the input arguments are

ALP effective angle of attack (radians), e
XNOSE distance from origin of body axes to body nose
RPER radius of spherical cap, Rper

and the output argument is

X0 axial location of stagnation point
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OIMEMS
DIAENS
DINENS
DIBENS
EXIERN
CCENCN
COUNCM
CCYMCN
CCrMC)
CCHNCH
COKNMCN

DESCRI

BPER
INOSE
BL
XINT
DST
DESI
ALPC

NBS

NT

NC

MOT

MAXS
KP=h
KBl

KPO

KB
KBas

pdIeD
ARAX

15. Llisting of Main Proyras

ICN A4(50),Ba(50),c8(50) ,uM(50)

1CN WS {SU), W(2,50), WL(2,50), WO(u0)

ICN A3 (50),DS(50)

IGN Y (6),F(6) ,PCH(6,4,2),iuK(6),uK(1:0)

AL FCA,ECHJ

/HALL/CSTN,DY,UE
/BLC1/CEIA,DEXL,EXIH,BIPH

/SCALE/HL, HLH, H
JINTEC/XINT,PHIP,5AL,CAL,PSIAX, ESIU, KPER
/CESLA/NAS, NCS
/0UTPT/k,CE,DCPX, DCPPH, DCPXP,D2PPH,GN,DGX

ETICN UF INEUT PARAMETERS:

BADIUS CF SPUERLCAL CAP

CISIANCE PRCM ORIGIN CF BOLY AXES Tu NOSE OF BODY
TCTAL QDY LENGTH

AXIAL LCCATICN CF LPHERE~AFTEaBCDY INTERFACE
INTEGHATIUN STEP SIZE ALUNG SIEBAMLINE

STEEF SIZE OGN SPHERICAL CAP (CLGREES OF ARC LENGTG)
EFFECTIVE ANGLE OF ATTACK (DEGEEES)

C FCH HALL'S BCUNDARY LAYER BETHCD
1 FCE ELUTINER'S METHOD
ECGE 1£5T: O FOR POINT ACDEL AT EDGE WHEN VELOCITY
AT POLNT
NEXT TU EVGE IS LESS THAN 99.95 PEECENT OF
POINT AT EDGE.
1 FOR POUINT AUUELC «HEN EVUGE SKIN FRICTICH
COEFFICIENT IS ABCVE 0,0005.
CCNVELGENCE TEST: O FOR CUNVELuLNCE EASED ON CFREX
CHANGING BY LESS THAN 0.5 PERCENT
BETWEEN SUCCESSIVE ITERATILONS.
1 EACU FCINT 1¥ PKROFILE IS CHANGING BY
LESS THAN 0.1 PERCENT.
ME1LCO USED IO 1NTEGRATE STBEAMLLNES:
1 FCk MALNE®'S VREDICTUR CORNRECTOR WETHOD
« ECi onUNGE~KUTTA METHCL
J FCh GeAb®S METHOD (STIFF SYSTtn)
NUNEEs CF S1ALIUNS TO bE CONEUILY
BCR FWCFILLS PRIMNTED BVERY NTH STATIGN
C FCF NU INTERATIUN PROFILES ¢RINTED
1 FOR LIERATLICN PRCFILES PHINTED
0 FCH ORDINARY PRINT OUT
1 FCh ALDATICNAL PhINT uUT
NUMJEL CF SIREAMLLINLS TO TRACL
C FCh vi:DINARY RUN
1 FCh G1HEAHLINE SHIFT FHOM FuI=J Tu PHI=1,0 AT XMAX
ClBCUJEELEATIAL ANGLZ AT INIEWFACE (AuMS=0) (DEGEREES)
ECS114Cy CN wINDWARD S1REAMLIMNE WHERE STREAMLINE
SHIFT Fhud wINDWAKD ¢LANE IS 4ADE (KENS=1)
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[a X g

OO0 n

o0 o0

Iso

1 FCR INTEGRATION OF STREAMLINES CbLY
C PGE ADLAITICNAL INTEGRATICN CF LCUNDARY LAYEK

STREAPLINE INTEGRATICN:

S = STREABLINE CLISTANCE (INDEPENDENT VARIABLL)

(1)
¥(2)
Y(3)
Y (4)
Y(9)
Y (o)

AXIAL ECSITLON

CIGCUMEERENTIAL POSITIUN
STEEAMLINE ANGLE

L (TEETA)/D (PHI)

LCG (L (Eiai) /D (BETA))

LXI (FCE BLOTTNER'S METHOD ONLY)

ElL=ACCS (- 14)
DGR=P1,180.

REAC (1,2) FPEN,XNOSE,BL,XINT,DST,CESIC,ALPD
2 FCRMAT(4(1X,E10.5),/,3(1X,F10.5))
hEAL (1,4) NBS,NT,NC,MOT,MAXS,AP,KPH,KPO,KBN,KBES,ISO
4  FORHAT (11(1X,13))
J¥ix=4cC
ETAE=4.5
YELGE=C,15
CALL ERESS
MDE=54)ES
iF (1SC.EQ. 1) GO TO 36
46 w(l,1)=0.0
W{l1,J88%)=1.0
W(Z,1)=0.0
#L(1,1)=0,0
WL(1,JPAX)=1.0
il “'1)2000
DE1A=ETAE/ (JHAX-1)
T1Eh=0
CetntXL=21,C
CY=YELCE/ (JHAX-1T)
DYs=LY
DSTS=LET

GUESS INITIAL ELOFILE

DO 10 J=2, JMAZL

W(1,d)=1.C

IL“,J)“.O

IS(J)=100

Wilc, )z (2,J=1)=0,5¢DETA® (W (1,J)+w (1,Jd-1))
10 CCMIIME

Kbz
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3O CUNIINCE
CALL CCCEFE (AN, aM,0b8,CH,DN8,AS,C5,08,%,WL,K3)
CALL JUMNVERT (JHAK,AN,bHN,CH,DH,A5,C5,0S8,4,KD)
1090 FOBN51(/,10(2X,FB.6))
ITER=1TEk4
KB=2
IF(MLEC.O) vO TO 32
DO 34 J9=2, JhAX
¢ IE (AES ((WS(J)=w (1,Jd))/H(1,J)).GE.0.,001) KD=1
wl(1,J)=W(1,J)
34 WS (J)=w(l1,d)
IF(KSe2C. 1) GG 10 30
32 FP=(2.*w(1,2)=-0.5%u (1,3))/DETA
CEhEX=co®*S bkl (<o) *EP
CFREXC=CEFhREX
LF(NCLEC. 1) GU TO 36
IF((ABS(CEEcA-CrHEXL) /CFREXL) »,GT.0,u09) KB=1
CFREAL=CFREX
IP(KB.EC. 1) GG 10 30
FPE== (2. %0 (1,J8AX~1)~0,5%H (1,JMAK=2)~1,5%W (1,JKEAX)) /DETA
CFREXE=2,*5,ET (2., ) *FPR
IF(LEBEXE.LE.U.002) GO TO 36
ETAE=ETAE4CcTIA
GU IC ub
36 dRITE(2,5)
) ECENMAL (//,20A, INPUT PAKAMETERS: ',/)
wEITE(2,3) REER,ANOSE,BL,XINT,DST,C¥Si0,ALPD,HAXS,NT,NC,N0T,
*N3S,4P,KPH,nEC, NCS,NAS
3 POBMAT (/,234, EPER = *,8X,F8.,5,5X,'X(NUSE) = ?,5%X,F8.5,/,23X%,
*'3CDY LENGTIH = *,1X,FB8.5,54, A (INTEKRFACE) = ¢,F8.5,/,23%,
«0DS1 = ' ,6A,F6.5,5X,*DELTA PSL = ',3X,F8.5,/,23X,
®'ANG, RITACK = *,1X,F8,5,54,'NC, STATICNS = ',18,/,23X,
«FLGE TEST = *,3X,12,3X,°CCNV, 1EXT =',2X,22,3X,'INTEs. METH = ¢
®, 1x,1¢,/7,234,'BoLe METHOD = *,1,12,3X,%HC., PROFPILES = ¢,12,31,
i [Tele CRCFALES =*,13,/,23%,'alkA Ps0, = *,2X,12,3X,
*/,43X,"NO, AXIAL PHESSURE STATIONS = ¢,13,/,23X,
**NC, CIRCUMFEBENTIAL PRESSURE STATLLNS = !',1I3,//)
TP (MPSeEveGolua KB ECe 1o Ol ISUL EYse 1) GO TO 45
D¢ 4 J=1,J8AX
w0 (J)=all,I)
45 CCwIINUE
UETAS=CETA
ALE=ALEC*LGi
CAL=CCLS (ALE)
3AL=SIN(ALE)
¥¢=0.C
sMC=9C,*CGH
CALL STAGN(ALF,X0,XNUSE,hPLA)
. LF (AL NE.DQ,V) CALL UGEOM (XU,YO,DRLCX,sdU,DGX)
CGL=CCE (GNHC)
SGC=ESLM (GHC)
aRITE(2,7) aL,Yu
7 PORBAL (/,23%,%5%4u. ECLNT, 40 =',FH,5,/,23X,'STAG, POINT, Y0 =¢,
*F3.%,/)
IE(KEeEwse 1) wLITE(3,1090) (w(1,d),d=1,JH84X)
wfIle(3,)) CEHEA,ITER
9 FORAANT (7, 1CA,'STAGNATION FOLINT CFREX = ',F9.6,2(,
$YCCAVERGEN e QW ', I13,1X, *ITERATIIUNSY, /)
P3IL=ACCS ((BLEx-XINT4XNULE) Z/hPER) ~ALP
IF(ESIC.GT.Luk) KSIC=LCGR
¢31CL=ESIC/VGR
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DCE=518 (PSIC)

DEES=LCE*HREER

CALL BGECM (XiNT,k1,DRI,GNI,DGL)
SGI=SIM(GRI)

CG1=CCS (GAI) :
wRITE(2,33) DUA,PS.LOD,DESID

33 FrORMAT{/,104,*DEFS/BEPER = ',F14.6,/,10X,*PSI (EPS) =*,F7.3,/,10X,

‘.DESI = "ESOZ'/)

K5s=1
KREAD (1,6) FEHIED
) FCHMAT (F10,5)
IF(KEXS.Ege0) GO TO 12
XMAX=EEIPD
FHIFD=C.0
12 CCHMIINUE
JHAX=40
1F (KES.EQ. 1. UE. 8B5.EQ.0) GO TO 13
DC 13 J=1,J84X
WL(1,d)=WC (J)
13 CCA1IMNE
LK=0
HL=0,.
Ki=0
NHE=0
CkL=CFBEXC
S=hEER*ESIC
SL=C.C
PHIE=EHIPD®DGh
DENSG= (1.4 TAN(GHI) *%2) ¢SIN(PHIP)**2%TAN (ALP) **2
+4+ (1. +TAN(GNL) *COS (PHLP) *TAN (ALP)) *%2
BETA=ACCS ({CCS(PHIP)4TAN (GAI)*®TAN (ALP))/SyLT (DENSY))
SETAL=EETA/DuER
PSIFAY=ACCS (CAL*5GI4SAL*CGLI*COS (PHIR))
PSIND=ESIMAX/DGR
DESI=LESIC*LG&
FsI=PEIC
IF(ES1.GE.ESIMAZ) PSI=PSINAX
NWES= (PS1MAX=-PS1Q) /DPSI
wdlTk(3,51) FEHIPD,BETAL,PSIND
51 EFCEMAT {/,30i,'PHI (INTERFACE) = ' ,F6.2,/,10%,*BEIA = *,F7,3,/,
*10K,'ESI{PAX) = * ,F8.4,//)
CALL SFHCAE(0.0,CP,UL,DCPSI)
IF (I1S5CeEQe0) GO TO 53
H=bEER*SIN (ES1M4X)
dil=H
S=prER®*ESINAX
30 10 42
53 CCNTIINUDE
4RITE (2,35)
35 FCORMAT(//,1UX,'SPUERICAL CAP RESULTS: ',/)
wBITE(3,52)

[

52 FChEAT(LX,*ESI',13X,'CPY, 141, JE/VIN', 10X, 'CFRELY, 11X, H', 15X,

050 ,1€X,'T1ER, 12X, "CPREX (EDGE) *,/)
CEn=CESI*bELh

IF‘JBS-EG.‘) GO I0 39

CALL SFHCME(FS1,CP,UE,CCPSI)

CC vy J=2,JM4X

#L(1,J)=0.C

4(2,J9)20.0
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d4(1,J)=UE

60 CCMIIXUE
GO TC 41

39 C(ALL SEHCAP (PSL,CP,UE,DCPSI)

41 HU=EEER*SIN(£S1)
NHE=NHE4 Y
GC 16 €CO

40 PSIC=ESI/DGE
“RITE(:,37) ESLD,CP,UE,CFBEX,H,5,1TER,CFREXE

37 FORMAT(/,2X,6(3X,F12,5),11X,12,3X,F12,5)
IF (RL.Egs 1) GU TO 42
IF(NHE,LT.NUES) GO TO 338
S=REEBR*ESINAX
ESI=ES1IMAX
KL=1
GO IC 29

1] $=54LPF
FSI=PSI14DESL
GO TC 39

COOOOOO0ONDO0O0O0O00n

42 LK=1
HG=0.C0001
TGL=(.C€0001
M11Eb=2
INCEX=1
METH=2
aRL1E(2,1C40)

1040 EOEMAT (//,04,%%" 15X, *PHLY, 13X, *TUETA,11X,*'S ‘,TuX,
sty 1Sx,"UE,VIN®, 10X, DPDS?, 12X, CFREL")

IP (KEC.EQ. 1) WRITE(3,1042)

1042 FURIAT (6X,°CE',14X,°DCP/LX* 10X, DCE/DPLIL",8X, 'CCPXE®, 11X,
A*DZEFL',V1X,*E , 15X, ITER ', 10X, 'CFREL (EDGE)',/,
A6bX,'C(TEETA) /UPHL',3X, 'LCu(DPHI/DEETA) ")

1050 FCRMAT(// ,28,4(3K,F12,5) , 1X,B14.6,3(34,F12.9))

1052 FOBRHAT(2X,6 (3K, F14.5) ,3%,L10,5X,P12.5,/,2£,2(3X,F12.5))

C
c
C
C BEGIN TC THACE SIBLAMLINE OVER BOCY, AFTER EACH INTEGRATION STEP
C CUMNPUTE 't1HE ECUKLARY LAYER USING EITHEE OLCTTNERS OR HALLS METLOD
C
(o
C
o
C INIT1AL VALUES AI LNTERFACE
o81=CS1S
DY=CYZ
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43

44

307

550

560

305
309
308

580

310

CETA=LETAS

Y {1)=XINT

SESI=SIN(ESINAX)

CPSI=CCS(ESINAX)

Y(2)=EB1P

¥ (3) =ACCS { (CAL®CGL=SAL*SGL#COS (Y (2))) /SESI)
CESICE= (SAL®*COGL*SIN(Y (2))/5PS1)
IP(Y¥(2).LE.0.0) GO TO 43

Y (4)=(SAL®SGI*SIN (Y (2))~COS (Y (3))*CkS1*DPSLDP)/
A (~-SPEI*SIN(Y(3)))

IP(Y{(1)sLE.0,0) Y(B)=SQET (=SAL*S61/0PSI4CPSI*SAL*CGI/SPSI*®2)
Y(S)=3LCG (FEER*SPSI/ (RI*CUS (Y (3))))
IP(NES.EC.0) GU TO 44

CALL ECN(NDE,S,Y,PF)

CAll BLCTINB(ESI,S,t,F,CEXI,EXIH,DIPH,DST)
K=0

Le=1

JJ=1]

LsE=DST

KL=0

IF(ISC.EC.1) GO TO 130

iF (NOT.¥E, 1) GO TO 550

DC 3C7 Jg=1, NCE

PCH(J,4,1)=Y (V)

PCN(J,4,2)=0,

SENC=S4EST
iF (KEMS.EC.0) GO TO 560
IF(Y(1).LT1,484X) 60 TO S00
Y (2) =CGR

Y (3) =Y (4) *CGE

INCEX=1

B6=C.CC0O01

CALL ECH(NLE,S,¥,F)
XMAX=BL

CCMIINCE

BHE2NEE4]

GG 1€ (3€5,31C,315) ,80T

1F (JJ.CE. 1) GO TO 315

CALL MILNES (Y,¥,PCH4,NDE,DST,S)
GC 1C SS5

DO S80 J=1,HCE
PCH(J,JdJ,1) Y (J)

PCH (J,3d,2) 2k (J)

3J=JJ-1

GC 1C 55

K=KoUNGE(Y,¥,S,C55,NDE,LST, 8k)
IF(hoEC.2) GG TU 142

CALL FCN(NLE,S,Y,F)

IF(hsEyla 1) GG 70 310
LF(S.GE.SENCUR.KL.EQ. Y} GO TU 411
SE=S
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60 10 310

311 IF(KL.EC. 1) Gu TO 312
MR=1
DES=DEE# (SENL-5P) / (S~SP)
KL=1
60 1¢ 310

312 KL=Q
GG TO E£55

315 CALL CGEAk (NLE, FCN,FCNJ,S5,HG,Y,SEMD, TOL,NETH,BITER,INDEX,IRK,
¥Rk ,1th)
CALL FCMb(NLCEL,S,¥,F)
IF(4U1.EC.1) GU TO 308

555 H=R*CLS(Y(3)) *EXP (Y (5))
1P (1SO0.EQ. 1) sU TO 130

600 LP=1
IF(KE.NE. Q) LE=MOD(MHP,KP)
IF (NBS.EC.0) GU tC 85
300 1TEER=C
KB=2
CALL ELCTNo4PSL,S,Y,F,DEXL,EXIH,BIPH,DST)
AKITE(3,5CC0) Y (6),EXIH,DEXLl,BLPH

5000 FORMAL(/,4X,*EXI =',El4.b,/,4X,'EXIH =',E14,6,/,4X,'DEXI =9,
®E1Ueab,/,4), " BETA =? ,P14,0,//)
361 ITER=0
360 CALL CCEFEF (JMAX,ANM,BM,CM,DH,AS,CS,DS,H,WL,KB)
CALL INVEERT (JMaX,4M,DM,CM,DM,AS,CS,DS,H8,KB)
IF(LE+EGeCoANCoKPH.EGa 1) wRITE(3,1090) (W(1,J), J=1,JMAX)
ITER=ITER4]
I1F(1TEB.GE.40) 4O TO 135
i1F (NCLEC. L) G4C TG 340
KB=3
DO 3SC J=2z, JbAX
LF (ABS ((WS(J) =% (1,d)) /¥ (1,J)) +GE.0,001) KB=2
350 dS(J)=0w(1,d)
IF(K34Eye2) GC TO 360
380 FE=(Z.%W(1,4)=0.5%w(1,3)) /DE1A
CFREX=S(RT (<. ) *tP*SURT (BL/Y (b)) *UES® 2%}
IF(NC.E¢. 1) GU TO 370
KB=3
LF { tADS {CFRELL~CFLEX) /CFREXL)»GT,0,005) KB=2
CEREXL=CFBREX
LF (KEs.ECo2) GC TO 360
370 FPE=-(2.%*w(1,J8A%~-1)-0,5%w (1, JMAX=2)=1,5%4 (1,JNAK))/DETA
CFREXE=CEFFEL*ECE/FP
LE(NI-EC.C, GU 40 375
IF(CFFEXE.GLa Vs QUOY) GO TC 380
GO 1¢ 118
375 LE((w(1,JM44=1) /7w (1,d¥4)).LTI.0.9995) U TO 380
GC TC 118
380 JHAX=JMAX D
1E(JAAX.GT.90) 6L TO 362
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390

362

363

364

WL{1,3M83L)=nwl{1,JNAX=-1)
DC 39C J=2,JitAX
n(l,J)=ul{1,9)
ETAE=ETAE4L2TIA
WRITE (3,1C30)
KB=2Z

LE=Q

6O 10 361
Judx=26

DO 363 J=1,25
Ji=s8J-1
WL(1,9)=RI(1,JX)
dL{1,<€)=WL(1,50)
ETAE=ETAE4DETA
DETA=LETA*Z,
DPSI=CESI*2.0
LS7=057%2,0
CPE=CEF*2.0
WRITE (3,119) JMAX, DETA
DO 3¢4 J=2,JMAX
w{l,Jd) =Wl {1,J)
KB=2Z

GC IC 361

APPLY HALL'S ThAMSFORMATLON
D(X)=C(x/L), C(1)=D(SCKT (RE)*Y/L), U=U/VIN, UE=UE/VIN

85

88
86
97

182

KB=3

DSTN= (S-SL) /8L

SH=S/BL

3H=SL4 (S=S1) /2.0

SEMN=SH/BL

dLH= (B4HL) /2.

1F (WL (1,J8A%).LE.O0.) GO TO b8

DC €8 J=2, JHAL

W(1,3)=u(1,J)*UE/WL(1,INAX)

CCMNTIMNUE

ITEh=L

CALL CCEFF (JMAX,Al,LM,CH,DH,AS,CS,C5,n, WL,KB)
CALL INVEBT (JMAX,AN,BN,CN,DM,AS,CS,DS,4,KB)
AiF(LE.EC.CoADLAKPiioEGe 1) WELTE (3,1090) (W(1,d),J=1,J8AX)
ITEF=1TER¢ 1

IF(ITEF.GE.40) GO TO 135

KB=4

IF(MLEC.0) Gu TO 196

DO 18z J=2, JHAX

IF(AES ((AS(J) =8 (1,d)) /¥ (1,J)) +GE.O.UO) Kid=3
#S(J)=h{1,J)
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1F(KZ.EG.3) GU TO 97
196 FP=(2.4%(1,2)-0.5%w(1,3)) /DY
CFREX=2,.*FE
IF (MC.EGL 1) GC 10 198
IF{(AES (CFLcal-CFREXL) /CFREXL),GT,0,005) KB=3
CFREXL=CFREX
IF(KB.E(s3) GU TO 97
198 KB=3
GO 1C¢ 115
150 JaaxsJIrALtd
IF(JXAX.LE.50) ¢U TO 151
JUAX=26
DO 116 J=1, 45
JXx=2+J -1
116  WL({1,Jd)=WL{1,JX)
WL(1,26)=wl(1,50)
YELCGE=YEDCE+4LCY
DY=LCY*:.0
DESI=CESI*¢.0
C51=D51#2,0
DEGL=CEF*2.0
wRITE (3,119) JHaAX, DY
119 FOSMAT(/,3X,*NORMAL GRID FOINTS RELUCED TO',I4,1X,/,
*3X,°C (NCRMAL) =!,F14,6,/)
GC 10 121
151 &RITE(Z,10130)
1030 FCRMAT (5X,'LCINT ADDED AT EDGE'Y,/)
YECGE=YEDGE+LY
wL (1,JE8X)=wl(1,JNaX=-1)
UEL=wL (1,JM4X)
iF(UEL.LE.Q0.) UEL=1,0
121 DC 113 J=1,IMkX
113 #(1,J)=4L (1,J)*UE/UEL
GG 1C €6
115 FPE=-(Z.%h {1,JiAXK~1)-0.5%u (1,J0AX~2)=1.5%% (1,J4AX)) /DY
CELEAKE=CFREX*FPE/FP
IF(NT.E(CL 1) GO TO 117
LAE((d{1,JHAX=-1) /¥ {1,JM X)) LT.0.9995) GC TO 150
GO TC 118
117 IF(CFREXELGELU.0005) 60 T 150
118 CCAMTINLUE
DO 120 J=1,J48AX
wl{1,d)=w(1,dJ)
120 CCNTINUE
HL=H
LF(CFREX.GTI.0.0) GO TO 130
137 55=~CFL/CCFDE ¢+ SL
lE(L&+EC. Q) GC TU 138
XS=XL4LCXDSL* (SS-51)
PS5= (EL4CPLSL® (5S-SL))/DGx
GO0 TO 1z4
138 PS18=SS/REEL/DGK
whITE(3,1081) SIS
1081 FORKAT(10X,'#*#® FLCW SEPAKATES FOR Tui3 STREAMLINE AT PS1 =',F7.3
A,14,'CEGREES",/)
GO Tu 140
1¢4 «RLITE(2,1080) £s,PS
1080 FOCRMAT(10X,%** FLCW SEPALATES FUuk TIIS STREAMLINE AT & =% ,F7.4
A,uX,EHL =',F7.34,/)
GC TC 140
130 LE(LP.Ey.0) WwRATE(I,1090) (w(1,J),3=1,IM8Ai)

119
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IF(LK.E(.0) GG TO 131
Y2C=Y (2) /LGk
Y3C=Y (3) /LGR
CECS=CCEX®F (1) $DCEPHSF (2)
WweITE(3,1050) Y(1),¥2C,Y3D,S,H,U:,DEDS, CFREX
1F (KEC.EQ. V) WRITE(3,1052) CP,DCPX,UCEPH,DCPYE,D2PPL,E,ITEE,
A CEREXE,Y (4),Y(5)
131 DCELS= (CFEEX=CFL) / (S=SL)
CFL=CEBEX
SL=S
AL=Y (1)
PL=Y (2)
DXCSL=F (1)
DPLCSL=F (2)
IF (NEE.GE.NAXS) GO TO 140
LF(Y(1)«GT.BL) GO TO 140
TF(1X.E¢.0) GO TO 40
GU TO €50
135 WRITE(3,136)
136 FOBMAT(/,3X,'LAST PKOFPILE FAILED TO CCNVEKGE AFPTERY,
*1%,'40 ITEGATIONS',/)
GO TC 137
142 WRITE(2,143)
143 FOEMAT(/,10X,*STREANLINE TERMINATED - STEP SIZE REDUCED TC *,
*¢LCWEF LIFI1*,/)
140 WRITE(3,141) NHP )
141 FCHEMAT (/,3X, STREAMLINE TERMINATLNG AFTLR?,I4,1X,'STATIONS',/)

KBS=KBS41
IF (RES.,LE.KEM) GO TO 8
SICE
ENC
C
c
C
Cc
16, Listing of Subroutine BGEUM
SUEFCUTINE OGEUM(XX,B,DELX,ud, DGX)
C
C THIS SULRCUTINE COMPUTES THE GEOMETRIC PRUPERTIES
C FCR A SEHERE-CGAIVE=-CYLINDER CUNFLGURATION
d
C X 15 AXIAL FCSITiON
C B IS BCLY BALIUS
C GECMETRY FCR SEHERE-OGIVE-CYLINDEK

IP(XX.LlE.C.1442) GO TO 10
IF(X£.GE. 5,19015) G0 T0 <0
R==13,4SQRTI (14, ** 2~ (XX-5, 19615) ##2)
DECX=(£,15615=XX)/ (R¢13,)
D2EDXc=a-(1.+LRDA**2) / (Rt 13.)
GC TC 30

10 R=Sy T (0.,C6CB11*%,~(XX-0, 10D1438)**,)
DRCA=(C. T661438-44) /R
DzfDXz==(%.4LaDX**2) /R
GC ICc 3C

20 R=1,
DRL«=0,
DZRDA2=0,C

30 GM=aTAN (DRLX)

120
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DGX=LZBEXZ/ (1.4 DlDX®e2)
BETULN
ENC

SUEROUTINE UGEOM(X,R,DRDX,GH,DGX,TRAT)

" GECHETRY ECR AN ELLIPS10D OF BEVULUTION WITH THICKNESS
RATIO 1TkA1

B=5ChT (TRA1*%2% (1.0~ (1.0-X)%42))
DEDY=(1,0-X) *TRAT®e2/R

GHM=ATAN (DBDX)
DZRDX?=-TB!1"2/B‘(1.0{(1.-X)‘DbDX/H)
DGX=L<EDX2/({1.04DRDX*#*2)

RETURN

ENC

17. Listing of Subroutine BLOTMR

SUBLOUTINE BLCTNB(PSI,S,Y,F,DEXI,EXIH,BBTA,DST)
DIMNENSION Y({6),¥(6),T(4),P(4)
CCHMCK /HALL/DSTN,DY,UE
ConnCN /OUTPT/B,CP,DCPX,DCPPH,DCP!P.DZPPH,GH,DGX
CONMCN /SCALL/UHL,HLH, H
COENCH /INTEC/XINT,PHIP,SAL,CAL,PH,ESIO,RPER
1F (PS1.LE,P510) KL=0
GO 10 (10,20,30), KL
T(‘)=0.0
P(1)=0.0
EQE=BEEE®*2¢LhPEN
EX1L=0.0
KL=1
10 T (4)=UESH®¢2¢KPER
P (4)=PS1
DESI=ESI-E (1)
Do 11 g=1,2
JK=J41
P(JK) =E (1) 4DPSI1 /4, 0%2,0%% (J-1)
CALL SEHCAP(P(JK) ,CPB,ULB,DCP)
1F (JK.ME.3) GO TO 11
DCESI=CCP
UE3=UEE
11 T(JK)=BQBOULBOSLN (B (JK)) *e2
Y(6)=EXIL{CPSI‘(T(’)i“.‘T(3)*T(“))/6-0
BXIH=E!IL{BPSI‘(T(1){“.‘1(2){T(3))/|2.°
DEXI=Y (6)-EX1L
BETA=-EXIH®LCPS1/ (T (3) SUE3*e2)
EXIL=Y (6)
P(1) =P (4)
T(1)=1(4)
UEL=UE

1F(P51.GE.PN) KL=2
KET1UDBN

30 XH=X115XL‘DST/2.{DDXL‘(DST/Z.)“2/2.0
XQ=!11CXL‘Dﬁl/“.{DDXL“DST/“-)"2/2-0
PH=E[1£EL’DST/2.{DDPL‘(DST/2-)“2/2.0
Pc=PL{tEL‘051/u.*DDPL0(DSI/M.)“Z/Z.O
CAll IIVISD(XQ,PQ,UEQ,DP!,DP?.P.DPXP.DPP2)
CALL IKVISB(XH,P“,UEH,DPX,DPP,P,DPXP,DPPZ)
HH= (H§{HL) 2.0

121
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20

iw=bLl4 (h=HL) /440
EXIA=EXIL4CST® (UELSHL®*244, SUELSH ** 24 UEH*1IH**2) /12,0
DXLS=LAL4LS1*DDXL/2.0

DPCS=CEL4LSI*UDFL/2.0

BETA=-EXIH® (CPX*DXCS+DPPSLPDS) / ( (UEu*Iil) *#2%UEH)
CEXI=Y (6)-EXIL

EXIL=Y (6)

UEL=UE

XL=Y (1)

EL=Y (2)

DXL=F (1)

DPL=F (2)

ODXL==SIN (Y (3)) *CUS (GM) *F (3) =COS (Y (3) ) *SIN (GY) *DGX*F (1)
CDEL=CCS (Y (3))%F (3) /R-DKDX*F (1) #SIN(Y (3)) /R*%2

UEL=UE

KL=3

FETUGN

ENC

18. Listing of Subroutine FCN

SUEBGUTINE ECNJ (N,S,Y,PD)
BEETURN
ENC

SUORHCUTINE ECN(N,S,Y,F)

DINEMSICN Y (¥),F(N)

COH4CN ,HALL/CSIN,DY,VUE

CC¥MCN /OUTET/R,CE,DCPX,DCPPH,DCPXP,D2PPU,6H,DGX
CCaU8Ch /SCALE/hL,HLU,H

CALL EGECF(21{1) ,k,DRCX,GN,DGX)

CALL IMVISC(X(1),¥(2),UL,DCPX,DCPEH, P, DCPXP,U2PPH)
CGM=CCE(GN)

SGF=S1IN (GV)

CIE=CCS (Y (3))

STH=SIN(Y (3))

TIH=TAN(Y (J))

F(1)=CI1E*CGH

F(<)=51d/8

F(3)=0.S%(STHCuM*DCPX4CTH*DCPEH/F) /UL**2-STH*SGH /L
Fu)==Y(4)*(Y(0)+45GH)/ (R*LuN)
+40.C® (STHACGU*DCPXP-CTU*DIEEH/R) JUE®»,
+40.E2CGM*CCEX*Y (4) / (CTHSUE**2)
$40S*LCEPN® (STHALGUPUCPX-CTu®DCEPl/n) /7 (UL*s2%JE* )
F(S) =Y (4) 7 (a*CTH)

IF (wsECsS) RETURN

B=h*CTL*EXE (Y (5))

F(o)y=UEsli*®,

122




RETUEN
ENC
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19, Listing ot Subroutine COEFF

SUEBOUTINE CGikF (JMAX,Ad,0lM,CM,DN,A5,CS,D5,¥,4Ll,KB)
CCMMCN /HALL/LSIN,DY,UE

ccrucy ,BLC1,CEIA,DEXI,EXIH,BIPH

CCMMCN /SCALE/HL,HLH,H

DIMENSAICN w(2,JMAX), WL(Z2,JNAX)

DIMENSICN Ad (JMAX) ,BM (JNAX) ,CM (JMAX),DH (JMAX)
DAMENSICN AS (JMAX),DS (JNAX)

IF (kBeECs2) GO 10 60

IF(KC.ECe3) GG TU 80

DETA=C.5

C SIMILAb SCIUTICN COEFFICIENTS

Ji1=J82x-1

DC 20 J=2, ui)?

A (J)=Co5% (1,040.5%DETA® W (2,J))

BM (J)=1,04 (DLTA*#2) *BETA*y (1,J)

Cit (J)=1.0-4d (J)

DM (J)=C.5% (DELA®®2) ® (BETA® (104 (1,J) **2) +W (2,J) *0,5%
(W (1,J41) - {1,J=1))/DETA)

A5 (J)=Ce2S*CLTA® (W (1,J41)=d (1,J=1))

DS {J)=C.0

20 CCMTIMLE
C5=0,5%CETA
DS (JBAX)=Ca0

RETURN
C
60 CONL1INUE
JEI=JKAX-1
DC t5 J=2,JH81
AN (J)=Ca54C. (5% DETA*W (2,4)
BM(J)=1,04CLTAs*2¢K (1,J) s (RIPH42,*EXIH/DEXI)
Ci(J)=1.0-Ai (J)
DM (J)=CaS® (al(1,dJ41)=2.%ul (1,J)44L (1,d=1})
$40, S¥CETA®S *ELIPH* {w(1,J) *%2-KL (V1,0)*%242,)
$140.25*LETA*W (2, J) * (W (1,04 1) =W (1,d=1))
$4HUELASOZ*EX I U/DEXL® (W (1,J) 8%240L(1,4)*82)
AS(J)=Ce 25#CaTA® (W (1,04 1) =W (1,d=1)4WL (1,J41) =KL (1,J-1))
Lo(J)=CETA® (=0, 254EXIH/DEXL) * (WL (1,J) ¢WL(1,d=1))
65 CCNTINUE
CS=0ETA* (CoiS4uXill/DEXI)
CS(JAAX)2CETA® (=04 29+EXLh/DEKL) * (AL (1,JHMAK) 4L (1,daMaX-1))
FETURN
C
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s NN aNeNaNeNaXsRaNeNs N2 NaNeNs!

CCEFFICIEMIS FLi HALL®S METHCD
80 CCNTINUE
W(1,JMAX) =UE
JB1=JrAK-1
DG 90 J=2,J41
AM (J)=C.5/CY%*2 4 0,25%w (2,J) /LY
EM{J)=1.0/0Y##2 ¢+ W(1,J)/DSTN
CM{J)=C.5/LY**2 - W(2,J) *0,25/DY
DM (J)=0.5/LY®#2% (WL (1,J41)-2.0%4L (1,J) +WL(1,d=1))
++(n(1,J)%*24WL(1,J)**2)*0,5/DSTN
+4 (8 (1, INAX)**2-WL (1,IJMAL) *%2) / (2. 0*DSTN)
4$40.25%% (2,J) /DY* (W (1,3+1)-w(1,d=1))
LS(J)=CYSEL/ (2. #DSTN*HLU) * (WL (1,J) +xL (1,d-1))
45 (J)=Ca25/CY® (W {1,341)=w (1,d=1)4WL(1,J41) ~WL (1,d=1))
90 CCMINCE
CS=C{%H/ (2. *DSTN*HLU)
LS (JSAX)=LY®HL/ (2. *DSTN®HLH) * (WL (1,J8AX) +WL (1,J8AX=1))
KETUBN
ENC

20. Listing ot Subroutine INVohkT

SUZGRCUTINE INVERT (JMAX,A,L,C,D,AS,CS,0S,W,Ki)
DAMENSICN A(JMAX), B(JNAX),C(IJNAX) ,u(JAAX)
ULMENSICN AS (JMAK), DS (JMAX)

DIMEMSICN W (2,J8AX)

DIALHSICH E(SC), EL(%0), u(50)

CC¥®CN sHALL/LCX,DY,UE

NEVERLY FEY;

£(J"4%)=0.0

G(JNAK)=0.0

EL (J4AX) =UE

1F (Ko NEs 2) EL(JNAX) =210
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290

10

15

25

35

us

55

65

75

45
95

DG <C JK=1, JH2
J=JMAX-JK

DEM=U (J) =0 (u) *L (u41) $+C5% (C (J) *6 (J$1) =AS (J))
E(J) = (A(J)-CS*(C(J)*G (J+1)-485 (J)) ) /DEN
G{J)=(C(J)*G (J+ 1) ~AS (J)) /DEN

EL(J)=(L(I)+ (C(J)*G(J4+1) ~AS5 (J)) *DS (J) +C (J) *EL (J+1)) /DEN
CUNTINUE

DO 10 J=2,J84Ax

W(1,J) =E(J)*W(1,J=1) 4G (J) *¥ (2,d-1) $£L (J)
W(Z,J)=W(Z,d=1)-CS*(d(1,d)+d(1,d=1))+D5(J)
CCNLIME

HETNEN

ENL

21. Listing of Function KEUNGE

FUNCTICN KLRUNGE (Y,P,L,H,N,HIAX,HE)
DIMEMSICN FHI(IZ).SAVEY(12),¥1(12),!2(12),YKP(12),PKP(12),Y(B)
xF (N)

DATA F,LOCF,kES/0,0,5.E~4/
H=N41

GU 10 (S,u4%5,¢5,89),4

IF (LCCEF.GT1.0) GO TO 25

IF (dk.Ey.1) GO TC 205

IF (AES(H).GE.AUS (HMAX)) H=HMAX
DO 15 J=1,N

YKE(J)=Y (J)

FKE(J) =F (J)

X0=X

DC 35 J=1%1,N

SAVEY (J) =Y (J)

PHd (J) =} (J)

Y(J)=SAVEY (J)+0.5%H*F (J)
X=X40.594

KRUNGE=1

RETURN

DC £S5 g=1,N
PUL(J)=ENI(J)42.0%F (J)

Y (J)=SAVEY (J)40.5%H*F (J)
RETUKN

DC 7S 3=1,N

PUL(J)=Euda (J)$2.09F (J)

Y (J)=SSAVEY (J){U*F (J)

£=X40,.5*H

RETURN

D¢ 95 J=1,N

Y(J)=SAVEY(G)4 (PHI(J)4P(J)}) *H/6.0
IF (MF.EG.1) 6O 1C 165

LF (LCCE=-1) 105,125,145

0C 118 J=1,N

Y2(Jd)=Y(J)
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X=

125 DC 13% J=1,N
135 YV1(J)=Y{J)
LCCE=2
u=0
KRETUEN
145 DC 1“5 J=1,N
+F (ALS{Y(J))+LT«S.E-0QU) 4O TC 155
ER={1(3)=Y2(J)) /7Y (J)
LF (AES(ER)=~EPS) 155, 155,175
155 CCMNIIMNUE
165 H=Z.*H
¥R=0
LCCE=0
KRUNGE=0
=0
RETUKN
175 DC 185 J=1,n
Y (J)=YKE (J)
F(S)=FKE (J)
185 Y2(J)=11(J)
X=X0
H=ﬁ/2.
iF (AES(u)sL7.1.4=10) GO TU 19
LCCE=1
4=
GO 1C 295
195 KKUNGE=2
4=0
LCCE=0
RETUKN
205 DG 215 J=1,0
1(J)=YKP(J)
215 EF(J)=ELE(J)
A=aC
n=g/ <.
GO 1C <5
ENLC

22. listiny of Subroutine MILNES

SUERCUTINE NXiLNES (Y,F,PLY,NDE,DS,S)
DIMEMSICN Y (b),t (v) ECH(v,4,2)
5 DC 1C J=1, NCE
Y (J)=ECK (J,9,1) 49,205 /3. % (2.%0CH(J,1,<)=PCN (J,2,2)
t+e.riCE(J,3,4))
10 CCAIIMLE
CALL FCMN{NCE,S,Y,F)
JC 30 J=1, NCE
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Y(J) QN (T2, 1) $US/3. * (F (J) 4. %PCH (U, 1,2)4PCN (J,2,2))
JO CCNTINUE

CALL ICN(NLc,5,Y,F)

DC 50 J=1%, NCE

DO 6 JJ=1,4

JK=£-JJ

JK2=JK=1

pDC 7¢ JL=1,2
70 ECH(J,JdK,JdL)=ECH (J,IK2,4L)
60 CCH1INLE

PLM(J,1,1)=Y (J)
S0 ECHJ,LN1,2)=F (J)

o5=GtLE

beETULN

ENL

23. Listing of Subroutine ERESS

SUEECUTINE EWELS
CUMH4CN ,PLATA/PHL (40) ,X(40),CE(40,40) ,CPX(2,40)
CCPMCN /CESTA/NAS,NCS

NAS = NUMLER CF AX1AL PLESSUKE STATIUNS
NCL = NUMEER CP ULIRCUMEERENTLAL PRESSURE STATIONS

Dub=ACCS (- 1.) /180,

KEAL (1,5) MCS, NAS
) FORMATL (12,14,12)
DC 10 J=1,NCS
AEAL (1,15) Ehi(J)
PHI (J)=EHI (J) *DGR
15 FCLMAT(F10.Y)
10 COMLAMNCE

20 <0 J=1,NA5
HEALC (1,15) X (J)
20 CLWlINUE

DC 30 J=1,NAS

READ(1,35) (LB(J,K), K=1,NCS)
35 FCEMAT(S(1X,E10.5))
30 CCNTAINUE

CEA(V1,d) AND CEA(2,J) ARE Thi AXLAL DEadVATLIVES CF THE PRESSURE
CLEEELICIENT AT THo INTEWFACE ANC ECDY &ND. EACH CIRCUMFPERENTIAL
ELAWE d4LST iIAVE A SET AS INPUT TO TuE GUADERATIC SLPINE ROUTINE.

LC 40 J=1,NCS

TEAL(V,16) veX{1,d),CPX(2,4)
16 FCuP 8T (FIC.5,14,F10,5)
40 CUNLINUE

EETURN

ENC
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24, Listing or Subroutine S2HCAP

SUBGCUTINE SEHCAP (P,CP,UE,DCPSI)
DIMENSICN COUE(10)
DATA CCE/0.666823, 1.130572, -0.134360, 0.1331321, -0,0099¢4,
* 0,014246, C.01848S5, -0.003913, 0.014531, -0.827853/
CCe¥CN S,INTEC/XINT, PHIP,5AL,CAL,PN,ESIO, RPER
IF (F-EC.O.C) 4=0
GC TC (£1C,200) ,4
CALL INVISD(XINT,PHL1P,UE,DCPX2,DCPENZ,CP2,0CPXP,D2PPH)
CALL EGECH (AINT,K,DR,Gd, LGX) )
DESILCX= (SAL*S1N (GN) *COS (PiHlp) ~CAL*CCS (GM) ) *DGX/SIN (PY)
CCELCSI=C.C
CE=0.0
co 10 J=1,9
CP=CE4CCE (J) #C0OS5 (J*PH)
10 LCCELSI=CCELSL1=J*COE(J) ¢S1d (J*pN)
CP=CE4CCE (10)
DCEX=CCEDSI*LESIDX
WRI1TE(3,2C) CP,CEZ,DCPX,DUPX2
20 FCh3AT(/,4X,'CONTINULTY UF PRESSURE AND DERLVATIVE ACKCSS?',
A' INTEFEACE: *,/,2(5X,F12.5),/,2(5%,F12.5),7)
4=y
IF(M.ECel) WKITE(],30)
30 FORMAT (uX,Ve**s% _UJADRATIC SPLINE EXTENDED TO ILWCLUDE?,
A' NCSE BEGICN *%s=x' /)
IF(®.ECs2) RKETUKN
PH=EK/ 2.0
CEE=LCF42/LESIDA
¥1=CE2/2.04C.S-CPP*EN/8.0
YPI=E,C* (¥1-1,0) /Pl**2
1P<=8.,C*{1-CE24CPP*PU/2.0) /PY**2
BETURN
210 IF(F.GT,EH) GC Tu 220
CE=1,04YP 1%L 3%32/2,0
DCES1=YEV1*E
GG TIC 230
220 CE=CE24CPE® (F~PM) $YP2* (P~PN)**2/2.0
DCESI=CER4YE2% (P-EH)
230 UE=SCBRT (1.0~CF)
KEZURN
200 CF=0.C
DCES1=C.0 ’
Du 250 J=1,9
LCESL=CCPSI-J*CUE (J) *SId (J*P)
250 CP=2CE4CCE (J) *CUS (J*P)
CE=CE4CCE {10)
VE=S(ET{1.0=Ck)
WETURN
ENE

oCcOHnoO
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25, listing of Subroutine MILCPIS

SUEGCUTINE AILPIS (AA,BB,CC,D,YH,N)
DIPEKSICN (40),0(40),AA (40),BB(40),CC(40),D(40),¥H (40)
MM 1=N-1

MMc=N=2

C(1)==CC)/LE(N)

U(l)y=c(1) st ()

DC 5 K=Z,hM1
ALEhA=AA (K) *¢ (K-1) $LB (K)

u (K) ==CC(K) 7/ ALFHA
U(K)=(C(K)-%A(K)*U (K=1)) /ALPHA

YN (NM1) =UINBY)

DO 10 K=1,)H2

JK=MNZ41-K

YN (JK)=C (JK) $Y8 (JK+1) 40 (JK)

KETURN

ENC

26. Listiugy ot Subroutine INVLSD

SULBCUTINE 1aVISC (XX,PPH,UE,DCPX,DCEPH,CPC,DCPXP, D2PPH)
CCENCN ,ECATA/PUI(40),X(40),CP (40,40),CPX(2,40)

CCMMCN sCESTA/NAS,NCS

DIMEMSICN CLLX(40),LELP{40),DP (40),CP1(40,40),CP2(40,40)
UIaeNSICN A(40),D(40) ,C(40),D (40),Ys (40),CPT (2,40)
LIPEMNSICN ALE (40) ,BETA(40),GAN (40),DEL (40)

UAIA 2,0/

IF (M. NE.O) GC Tu 100

CO 10 Jd=2,NA35

DELX (J) =4 (J) ~&(J-1)
NC¥1=NC5-
HCH=NCS=2
NAP1=pNAS-1
NAMNc2NAS-

A(1)=C.C
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B(1)=2v/DELY () 4 (2 +VELX (3) /LDELX (2)) 7/ (CELX(3) 4DCELX (2))
C(1)=CELX (2) /0BLA (3)/ (CELX (2) +DELX (3))
DO 20 »=2,NAN2
A(N)=CELX IN$1)/DELX (N) /(DLLX (N4 1) 4DELX (N))
B(M)=(Es4CELX(N)/DELX (N4 1))/ (DELX (N) +DELX (N1 1})
4+4 (2 4CELX (N42)/DELX(N41) )/ (DELX (N$2) 4 DELX (N4 1))
C(N)=LELX (N¢+1)/UELX (N4+2)/ (DELX (N4+1)+DELX(N$2))
20 CCXTINUE
A(NARV)=DELX (NAS) /DELX (NAM1)/ (LELX (NAS)+DELX (NANT))
B(NAM1)=(2.4+DELX (NAMT) /DELX(NAS))/ (VELX (NAS) $4CELX (NAN1))
++42./DELX (NAS)

aon

OC 30 N=1,NCS
D(1)=CE(1,N)*2. /DELY(2)$CE(2,N)*((2.+DELX(3) /DELX (2) )/ (LELX (3}
4+4DELX(2)) 4CELX(2) /DELX (3) / (DELZ (2) $DELX (3))) + CPX(1,N)/2.0
DO 3z J=2,NAN2
D(J)=CE(J,5) % (A(J)+{2.4DELX (J) /CELX (J+1))/ (DELX (J) 4DELX (J+1)))
+4CE(J41,N) # (C(J) 4+ (2.4DELX (J+2) /DELX (J41) )/ (DELX (J42) +DELX (J$1)))
32 CCMINUE
D(MAM1)=CE (NAN1,N)* (DELX (NAS) /DELX (NAM1)/ (DELX (NAS) +DELX (NA# 1))
++(2.+DELX (NAN1) /DELX(NAS) ) /(CELX(NAM1) $CELX (NAS)))
4+4CE(NAS,N) *2,/DELX (NAS) = CEX(2,N) /2.0
CALL ®1DP15(A,B,C,C,YM,NAS)
DO 34 J=2,Nad1
11=CLLX (J41) $4LELX (J)
T2=(YM (J) =CE (J, N) ) /DELX (J41)
T3= (Y0¥ (J=1)~CP{J,N))/DELX (J)
CE1(J,N)=4,/T16 (DELX (J) #T2=DELX (J41) *13)
CP2(J,0) =28, /11% (124T3)
34 CCHTIMUE .
CE1(1,K)=CEX (1,N)
CP2(1,8)=8.% (YN (1)=CP (1,N)=CPX (1,N) *VELL(2)/2.)/DELX (2) #*2
CP1(NAS,¥) =CEX (2,H)
CPZ(MAS,N)=8.% (YN (NANT)~CE (NAS,N) $CPX (2,N) $DELX (NAS)/2.)/
ADELX (NAS) #%2
30 CCMIIMNUE
c
c
DC 35 J=1,NAM?
35 DELX(J)=(X(Ji ) +X(J)) /2.

DC 40 J=2,NCS
40 DELE(J)=PHI (J)=-PHL (J~1)

BEIA(1)=2./7VELP (2)

G&M (1) =(2.4CELF (3)/DELP(2) ) /(DELP(3) +DELP(2))
DEL(1)=UELL (2)/DLLP (3) /7 (DELP(2)4DELF (3))
A()=ALE(Y)

BY)=EETA (1) $4GANM 1)

C{l)=CEL (1)

DO 4S5 J=2,80H2

ALE (J)=CELP (J41)/DELP (J) / (DELP (J41) +DeiP (J))
DETA(J)=(2.4CELP (J)/DELP (J41) )/ (DELP (J) 4DELDP (J41))
AL ()= (Le4LELP (J4<4) /DELP {J4 1))/ (DELP (J42) +DELP(J+ 1))
DEL({J)=LELZ (J¢1)/DELP (J+2)/ (DLLP(J41)4DELD (J42))
A(J)=ALE (J)

5(3) =EE1A (J) $GAN (J)

C{J)=LEL (J)
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(s XaNesNaXp!

o

45

50

100

105
110

115

CCMLANCE
ALE (NCM1) =CELE (NCS) /DELE (NCM1) / (DELP (NCS) +DELP (NCH1))

GETA (NCM1) = (Z2.4DLLE (NCHM1) /DELP (NCS) )/ (DELP (NCH1) +DELP (NCS}))
GAM(MCK1) =2, /DELP (KCS)

DEL(MCN1)=C.0

A (MCM1)=ALE (NCM 1)

b(NCK1) =BE'la (NCHV) +GAN (NCA1)

C(MCM1)=DEL(NCHT)

Do 50 J=1,hCM
DE {J) = (EHL (J+1) ¢+PHI (J)) /4.0
=1

DG 105 J=1,NAN1

IF (XX.LE.CELX(J)) GO TO 110

CCATIMCE

LF (XX GT.CELA (NAN1)) J=NAS

DEX=XX-X (J)

DC 115 K=1,NCS
CET(1,K)=CP(J,K)+CE1(J,K) *DEX+CP2 (J,K) *DEX*%2/2,
CPT(2,K)=CET1(J,K)+CE2(J,K)*DEX

C SPLINE F117 BCTIH CP AND L (CP)/D(X)

C

130
140

125

126

127
128

122

123

DO 140 L=1,8CM1

1F (FEY.LE.LE (L)) GU TO 140
CCNT1NUE

lF(FEL.GT.LCF (MCNT)) L=NCS
DEEI=FEH-EHL (L)

DO 12C N=1,s

D (1)=CE1(N,1)*BETA (1) $CPT (N,2)* (¢AN{1)+DEL (1))
DC 125 K=2Z,NCH2

D(K)=CET(N,K)* (ALP (K) 4BETA(K))+CET(N,K+1)* (GAN(K)+DEL (K))
L(NCMY)=CET(N,NCHT1)* (ALP (NCM1) {BETA (NCM 1)) 4CPT (ki,NCS) *GAN(NCN1)
CALL MICPIS(A,8,C,C,YM,NCS)

IF(L.EC.1) GC TO 126

IF(L,EC.NCS) GO TO 127

11=CEeLE (L41)+CELP (L)

T2= (Y8 (L) ~CE3 (N,L))/DELR (L41)

T3=(Y¢(L-1)-CET (N,L))/DELP (L)
TJ=2./T1% (CELE (L) $TZz-DELP (Lt 1) #T3)
TK=8,,11%(12413)

GL IC 18

Td=4.C

T&=8.% (Y4 (1) -CPT (N,L) ) /WELP (2) *92

U TC 1.8

TJd=C.C

TRK=8.% (YN (NCM1)=CPT(N,L))/DELD (NCS) *#*2
CPT(N,V1)=CET (H,L)41J*DPHL{TK*CENL®®/2,

GG TL (124,14 ,N

IE(ErE.bT.O.) wu TO 123

DCE&H=C.0

DEFEN=1K

GC 1¢ 120

DCEEYH=TJI4TK*Lid]L
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(s N aXg]

000

noOonon

D2EFL=TK
GO IC 120

124 ECCEXP=TJ4TIK*CPLHL
120 CCNIINUE

10

CEC=CET(1,1)
LCEX=CE1(2,1)
UE=SCBT (1.-CEC)
SETUGN

ENC

SUEKCOTINE IMVISD(X,PHI,CP,UE,UEX,UEP)
FCTENTIAL SOIUTICN FCH ELLIFSOLID CF BEVOLUTION

CCMMCN ,STAG/20,Y0,5AL,CAL,TRAT,SC,LBE,SEE,CGO,AQ,BO,VGRAD
DATIA M/0/

IF(M.EC. 1) U TU 10

T1=2.0*CAl/ {2.0-1A0)

'IZ=Z.C‘SAI/ (2.0"”0)

CALL BGECM(X,E,CBDX,GN,DGX,TRAT)
APSC=(X=1,0) ##24 (F/TEAT®%2) #%2

155 (11*R/TBATI**24T2% (X~1,U) *CC5 (PHI) )

UE=S(BT (TS*#»2/APSQ4 (T2*SIN (PHI) ) *#2)

CP=1,0~0E#*»*2

UEX= (1S*(T1*CRDX/TRAT**24T2%CUS (PHI) ) /APSY~TS5##2% ((x-1.0) ¢
A R*DEDX/TEATI*%2/TRAT**2) /APSC**2) /UL

UEBE= (=TS5* (T2#% (L=1,0) *SIN (FHI)) /APSQ+T2**2#*SIN (PHL) *COS (PHI)) /UE
IF(MoEC.1) BETURN

DUSCX= (TV*CRCX/TRAT**2472)/Sua’l (APSy)
VGRAD=LUSCX*CGO/T2*Y0

1=1

KEETIUEN

ENC

27. Llisting ot Subroutine STAGN

SUBECUTINE STAGN (ALP,XO, XNUSE, HPER)
THIS SUBECUTINE COMPUTES THE MEWTUNIAN STAGNATION POINT FCR
A GIVEN EFFECIIVE ANGLE OF ATTACK
XC=XNCSE4GEEE* (1. 0-COS (ALE))
BETUGN ~
ENL
SUERCUTINE STAGN (ALP,XO, YU, TRAT,AC,80)

THIS BOUTINE LGCATES 1HE STAGNATICN ECINT CN
AN ELLIESICD CF KEVOLUTION

E=SCRT (1, 0=1EAT**2)

ESC=EYE

EGB=ESC*E

AC=2,0% (1,0-ESQ) * (0.,5%AL0G {(1.4E)/ (1. =E))=E) /EUB
BC=1.C/ESC={1e0-ESy) *ALOG ((1.4E)/ (1. =E) )/ (2. O¥EQB)
E= (2+C~-A0) *TAN(ALP) 7 (2.0-40)
YO=P*TRAT*#2/5QKT (1. 04 (P*15GAT) **2)
XKC=1,0-SCHT (1.0- (YU/TRAT) ¢#2)

GETURD

ENC
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28, Llistinyg ot Input Data tor Sphere-

Cyive=Cylinder Contiguration

0.060811 0,10%3328 17.50 O, 1442

0.Co0tu 2.0 65,0

000 000 0C1 003 3C0 000 COO 00U 002 COO VOO

10 34
0.0
11,25
33.75
52,25
76,175
101,45
123.75
146,25
1€¢8,75
180,00
0, 1442
0. 15690
0,16
0.17
0.18
0.20
0.21630
0.26620
0.32870
0, 409064
0.50
0.60
0,70
0.80
.90
1.00

1. 100
1. 20
1,50

.
C
wn

NEE £ Wwiw N
L]

17.5

0.58200C00 C.B58ULLUY 0.,154000C0 -0.4890000 -1,3840000

'1.d58 '1.556 -1.U50 -‘IUJU
0,9716 C. 6890 0,2320 -0.,75V3
_1369“7 ".0033 -"1‘“3 —000985
€C.9703 0.5923 CeliCB -L,7800
-1.9010 ~t.c3o0¢ -1.0% -0,0695
00,9009 C.u8%8y 0,2579 -0,8450
“1.91¢ -1.004 -1,012 -0.0612
0,965 C.90v 0.zt -0,8540
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‘1. 598
‘,.5789
‘0. b“bS
-1,010
-0. 6-]9
-1.6620
=004
"066“




-’-917
0,970
"1- 891
0,9770
-106713
0.9899
-1' 53&8
C. 9862
0.9811
-1' 730J
€.975
-1-7
0.967
-10 b66
0.958
-1.030
0.95
-1. 6038
0.942
-1.583
0.9135
-'n 559
0,920
-1.536
0,918
-1.516
0.894
-1.‘.67
0.872
-1- “35
J, 849
-1' “’2
0,798
-1ljd“
0,741
-1.347
0,684
0,627
-1, 199
0,583
-1, 105
0.5570
-1.08.’
Q, 5441
-00850
0,5380
-0, 7187
2.531
-0.,609
0.525
-0, 04
J.5144
'1.057
0.5080
'L
0,5012
-0.415
‘1.480
4,60

- 1. 580
€,9€30
-10 5““0
C.9047
"1. 52]“
€.9040
-]. “710
€.9027
€.8995
-1.3819
C.854
-1- 32,
c.888
‘1. 262
.88«
-1,235
c.874
-1, 190
c.8€7
C.839
“. 105
€C.851
"1. C6B
C.B42
"1. CJD
C.81¢
-C.550
C.7394
-0. £93
c.7390
-0. EJ“
C.72¢
'0. 7“
C.666
-0- 62“
c.613
-4, 5“3
C.5€3
-0, 477
€.518
'0."15
C.510y
-Ou 390“
€.4730
'0. Jg
C.ue39
‘0. “012
0.4520
'0.5“72
-G.635
C.uzz8
0. 6403
C.ouZzo
-0,32
C,u3%4
-Ce 280
-C.OlZZS
C.CCC74

-0,905
0,203
-0.904
0,2193
-0.8717
0.2242
-0.38134
0, 2347
-0.784
0,2460
-0.7492
0,256
‘00 725
0,202
-0. 694
0.267
-00 607
0.269
-0.636
0.2M
“0. 608
0.272
-0.580
0,271
~0.552
0.270
~0.525
0,259
-0- “50
0,243
-0. 391
0.223
'0. 337
0,178
-0‘ 253
0,129
'0. 19“
0,080
0.033
-00 ]62
-0.011
-0.,415
-0'0196
"0. 23
-0.,0528
'0. “25
-0,0790
-0.7553
_05 1000
-0.38580
~0,11u8
-0,d58
-0.1205
-0. OJS‘
‘0. 07“0
-0, 48
-0,0131

-0, st
-0.b330
-0. 619
‘0-8100
-0. 5950
-0,7777
-0.5300
-0l7u98
-0. “700
-0.7169
-0.4200
-0,68
-0,656
'O|JS“
-0.639
’0. JJS
-O. 626
-0- 321
-0.,615
-0.314
-0.606
-0. 309
-0,597
-0- 305
-0, 592
- 300
-0-580
-U. ‘86
'Ol 575
-0, 27“
=0.,572
=0.,262
'0.57“
~0.245
-0.582
-0, 205
-05 595
-On 178
=0.610
-0, 156
~0.627
=0. w7
' bJOS
-0, 150
-0.6705
~0.4477
-0.7184
-0, 845¢
-0: 75“6
-1, 0870
-0.7658
“1.1“90
~0.7538
'0. "JOJ
-0.6380
~044530
’055J21
~Ue 39
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-0. 595
-1.6310
‘0. 5b0
-1.6163
-01 5.’80
"o 56“0
"0. 4850
-1,5430
-1, 4910
-0. 3820
-1,432
-0, 345
'1. 398
-0.317
-1,374
‘0- 300
’10 355
-0.284
'1.3“
-0.277
‘1.326
-0'27“
-1. 315
-00172
-‘u306
-00 ibg
‘1-287
'0- 264
‘11276
-0.258
-1. 272
-0.254
-1.264
-0. 2“5
'1-26“
-0. 224
-1.277
-0- 177
-1.290
-0| 148
‘1.299
-0. 137
-1.3070
-0. 140
‘1- 3163
-0| “50
-1.2856
-0.85
-1.1897
-1| 117
'1-[““0
’10240
-1.4508
' 750
-1.0941
’00509
-0.8233
-0, 402




3.40
-16.67
‘15.0
-2- ;-'O
15,0
32,45
47.5
€3, 25
50,0
75.0

€.,C2270
-C.C480
(.C804
c.Cle83
-€.21¢33
-C.00u4d3
C.C130
c.C1833
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